scholarly journals Chemically Modified Synthetic microRNA-205 Inhibits the Growth of Melanoma Cells In Vitro and In Vivo

2013 ◽  
Vol 21 (6) ◽  
pp. 1204-1211 ◽  
Author(s):  
Shunsuke Noguchi ◽  
Junya Iwasaki ◽  
Minami Kumazaki ◽  
Takashi Mori ◽  
Kohji Maruo ◽  
...  
1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1066
Author(s):  
Ali Zari ◽  
Hajer Alfarteesh ◽  
Carly Buckner ◽  
Robert Lafrenie

Uncaria tomentosa is a medicinal plant native to Peru that has been traditionally used in the treatment of various inflammatory disorders. In this study, the effectiveness of U. tomentosa as an anti-cancer agent was assessed using the growth and survival of B16-BL6 mouse melanoma cells. B16-BL6 cell cultures treated with both ethanol and phosphate-buffered saline (PBS) extracts of U. tomentosa displayed up to 80% lower levels of growth and increased apoptosis compared to vehicle controls. Treatment with ethanolic extracts of Uncaria tomentosa were much more effective than treatment with aqueous extracts. U. tomentosa was also shown to inhibit B16-BL6 cell growth in C57/bl mice in vivo. Mice injected with both the ethanolic and aqueous extracts of U. tomentosa showed a 59 ± 13% decrease in B16-BL6 tumour weight and a 40 ± 9% decrease in tumour size. Histochemical analysis of the B16-BL6 tumours showed a strong reduction in the Ki-67 cell proliferation marker in U. tomentosa-treated mice and a small, but insignificant increase in terminal transferase dUTP nick labelling (TUNEL) staining. Furthermore, U. tomentosa extracts reduced angiogenic markers and reduced the infiltration of T cells into the tumours. Collectively, the results in this study concluded that U. tomentosa has potent anti-cancer activity that significantly inhibited cancer cells in vitro and in vivo.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessia Varone ◽  
Chiara Amoruso ◽  
Marcello Monti ◽  
Manpreet Patheja ◽  
Adelaide Greco ◽  
...  

Abstract Background Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. Methods Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. Results The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. Conclusion The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs.


1988 ◽  
Vol 91 (2) ◽  
pp. 281-286
Author(s):  
M.C. Copeman ◽  
H. Harris

It has been shown that when malignant tumour cells are fused with normal fibroblasts the suppression of malignancy in the hybrids is linked to their ability to produce a collagenous extracellular matrix in vivo. When, as a consequence of chromosome loss, segregants arise that reacquire malignancy, these do not produce any detectable matrix. In this paper we examine the main components of the extracellular matrix produced in vitro by hybrids between malignant mouse melanoma cells and normal mouse fibroblasts. Hybrids in which malignancy is suppressed synthesize about ten times as much type 1 procollagen as the malignant segregants derived from them; they also retain more fibronectin in the cell layer and release less protease activity into the medium. Malignant segregants more closely resemble the parental melanoma cells in producing fibronectin and mainly types IV and V procollagen. When hybrid cells in which malignancy is initially suppressed are grown continuously in vitro, the production of type I procollagen declines, and the production of type V procollagen and the release of protease activity into the medium increase. These changes, which are associated with the loss from the hybrid cells of both copies of the chromosome 4 derived from the parental fibroblast, predict the reacquisition of malignancy when the cells are inoculated into mice. It is possible that one gene or set of genes located on chromosome 4 determines both the execution of the fibroblast differentiation programme and the suppression of malignancy.


2015 ◽  
Vol 32 (8) ◽  
pp. 1170-1182 ◽  
Author(s):  
A. AlQathama ◽  
J. M. Prieto

Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. We here systematically and critically survey more than 30 natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and chart the mechanisms of action for this underexploited property.


1998 ◽  
Vol 18 (8) ◽  
pp. 4679-4688 ◽  
Author(s):  
Deok Ryong Kim ◽  
Marjorie A. Oettinger

ABSTRACT V(D)J recombination in vivo requires a pair of signals with distinct spacer elements of 12 and 23 bp that separate conserved heptamer and nonamer motifs. Cleavage in vitro by the RAG1 and RAG2 proteins can occur at individual signals when the reaction buffer contains Mn2+, but cleavage is restricted to substrates containing two signals when Mg2+ is the divalent cation. By using a novel V(D)J cleavage substrate, we show that while the RAG proteins alone establish a moderate preference for a 12/23 pair versus a 12/12 pair, a much stricter dependence of cleavage on the 12/23 signal pair is produced by the inclusion of HMG1 and competitor double-stranded DNA. The competitor DNA serves to inhibit the cleavage of substrates carrying a 12/12 or 23/23 pair, as well as the cutting at individual signals in 12/23 substrates. We show that a 23/33 pair is more efficiently recombined than a 12/33 pair, suggesting that the 12/23 rule can be generalized to a requirement for spacers that differ from each other by a single helical turn. Furthermore, we suggest that a fixed spatial orientation of signals is required for cleavage. In general, the same signal variants that can be cleaved singly can function under conditions in which a signal pair is required. However, a chemically modified substrate with one noncleavable signal enables us to show that formation of a functional cleavage complex is mechanistically separable from the cleavage reaction itself and that although cleavage requires a pair of signals, cutting does not have to occur simultaneously at both. The implications of these results are discussed with respect to the mechanism of V(D)J recombination and the generation of chromosomal translocations.


2018 ◽  
Vol 283 ◽  
pp. 10-19 ◽  
Author(s):  
Aïcha Sassi ◽  
Mouna Maatouk ◽  
Dorra El gueder ◽  
Imen Mokdad Bzéouich ◽  
Saïda Abdelkefi-Ben Hatira ◽  
...  

Blood ◽  
1974 ◽  
Vol 43 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Arlan J. Gottlieb ◽  
Harold A. Wurzel

Abstract Methyldopa-treated gamma globulin can be demonstrated serologically on either the red cell surface or on latex beads by the indirect antiglobulin reaction. The development of a positive antiglobulin reaction was related to methyldopa concentration and the length and temperature of incubation of methyldopa with protein and could be partially inhibited by the addition of albumin to the incubation mixtures. After more prolonged incubation, antiglobulin positivity also developed with plasma-treated with methyldopa. 14C-methyldopa was covalently bound to gamma globulin. Aggregation of gamma globulin following treatment with methyldopa could be demonstrated by both sedimentation velocity and molecular weight determinations employing low-speed equilibrium centrifugation. Protein aggregation was a function of time, temperature, and methyldopa concentration. Detectability by the antiglobulin reaction, the darkening noted in solutions to which methyldopa or hydroquinone had been added, as well as the aggregation of protein was inhibited by a reducing agent which prevented formation of a quinone from the hydroquinone. Some of the immunologically atypical features of the sensitization of red cells by methyldopa or its structural analogues are explicable by the adherence, in vivo, of chemically modified, nonantibody gamma globulin which renders the red cell directly antiglobulin positive.


Sign in / Sign up

Export Citation Format

Share Document