scholarly journals Regulation of Differentiation by HBP1, a Target of the Retinoblastoma Protein

1998 ◽  
Vol 18 (8) ◽  
pp. 4732-4743 ◽  
Author(s):  
Heather H. Shih ◽  
Sergei G. Tevosian ◽  
Amy S. Yee

ABSTRACT Differentiation is a coordinated process of irreversible cell cycle exit and tissue-specific gene expression. To probe the functions of the retinoblastoma protein (RB) family in cell differentiation, we isolated HBP1 as a specific target of RB and p130. Our previous work showed that HBP1 was a transcriptional repressor and a cell cycle inhibitor. The induction of HBP1, RB, and p130 upon differentiation in the muscle C2C12 cells suggested a coordinated role. Here we report that the expression of HBP1 unexpectedly blocked muscle cell differentiation without interfering with cell cycle exit. Moreover, the expression of MyoD and myogenin, but not Myf5, was inhibited in HBP1-expressing cells. HBP1 inhibited transcriptional activation by the MyoD family members. The inhibition of MyoD family function by HBP1 required binding to RB and/or p130. Since Myf5 might function upstream of MyoD, our data suggested that HBP1 probably blocked differentiation by disrupting Myf5 function, thus preventing expression of MyoD and myogenin. Consistent with this, the expression of each MyoD family member could reverse the inhibition of differentiation by HBP1. Further investigation implicated the relative ratio of RB to HBP1 as a determinant of whether cell cycle exit or full differentiation occurred. At a low RB/HBP1 ratio cell cycle exit occurred but there was no tissue-specific gene expression. At elevated RB/HBP1 ratios full differentiation occurred. Similar changes in the RB/HBP1 ratio have been observed in normal C2 differentiation. Thus, we postulate that the relative ratio of RB to HBP1 may be one signal for activation of the MyoD family. We propose a model in which a checkpoint of positive and negative regulation may coordinate cell cycle exit with MyoD family activation to give fidelity and progression in differentiation.

1997 ◽  
Vol 107 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D. Doenecke ◽  
W. Albig ◽  
C. Bode ◽  
B. Drabent ◽  
K. Franke ◽  
...  

2001 ◽  
Vol 21 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Jian Yi Li ◽  
Ruben J. Boado ◽  
William M. Pardridge

The blood–brain barrier (BBB) is formed by the brain microvascular endothelium, and the unique transport properties of the BBB are derived from tissue-specific gene expression within this cell. The current studies developed a gene microarray approach specific for the BBB by purifying the initial mRNA from isolated rat brain capillaries to generate tester cDNA. A polymerase chain reaction–based subtraction cloning method, suppression subtractive hybridization (SSH), was used, and the BBB cDNA was subtracted with driver cDNA produced from mRNA isolated from rat liver and kidney. Screening 5% of the subtracted tester cDNA resulted in identification of 50 gene products and more than 80% of those were selectively expressed at the BBB; these included novel gene sequences not found in existing databases, ESTs, and known genes that were not known to be selectively expressed at the BBB. Genes in the latter category include tissue plasminogen activator, insulin-like growth factor-2, PC-3 gene product, myelin basic protein, regulator of G protein signaling 5, utrophin, IκB, connexin-45, the class I major histocompatibility complex, the rat homologue of the transcription factors hbrm or EZH1, and organic anion transporting polypeptide type 2. Knowledge of tissue-specific gene expression at the BBB could lead to new targets for brain drug delivery and could elucidate mechanisms of brain pathology at the microvascular level.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Raghunath Chatterjee ◽  
Vikas Rishi ◽  
Julian Rozenberg ◽  
Paramita Bhattacharya ◽  
Kimberly Glass ◽  
...  

2015 ◽  
Vol 65 (5) ◽  
pp. 485-493 ◽  
Author(s):  
Tamás Csont ◽  
Zsolt Murlasits ◽  
Dalma Ménesi ◽  
János Z. Kelemen ◽  
Péter Bencsik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document