scholarly journals Cyclic AMP-modulated phosphorylation of intermediate filament proteins in cultured avian myogenic cells.

1982 ◽  
Vol 2 (9) ◽  
pp. 1104-1114 ◽  
Author(s):  
D L Gard ◽  
E Lazarides

The intermediate filament proteins desmin and vimentin and the muscle tropomyosins were the major protein phosphate acceptors in 8-day-old myotubes incubated for 4 h in medium containing radiolabeled phosphate. The addition of isoproterenol or 8-bromo-cyclic AMP (BrcAMP) resulted in a two- to threefold increase in incorporation of 32PO4 into both desmin and vimentin, whereas no changes in the incorporation of 32PO4 into tropomyosin or other cellular proteins were observed. The BrcAMP- or hormonally induced increase in 32PO4 incorporation into desmin and vimentin was independent of protein synthesis and was not caused by stimulation of protein phosphate turnover. In addition, BrcAMP did not induce significant changes in the specific activity of the cellular ATP pool. These data suggest that the observed increase in 32PO4 incorporation represented an actual increase in phosphorylation of the intermediate filament proteins desmin and vimentin. Two-dimensional tryptic analysis of desmin from 8-day-old myotubes revealed five phosphopeptides of which two showed a 7- to 10-fold increase in 32PO4 incorporation in BrcAMP-treated myotubes. Four of the phosphopeptides identified in desmin labeled in vivo were also observed in desmin phosphorylated in vitro by bovine heart cAMP-dependent protein kinase. Although phosphorylation of desmin and vimentin was apparent in myogenic cells at all stages of differentiation, BrcAMP- and isoproterenol-induced increases in phosphorylation of these proteins were restricted to mature myotubes. These data strongly suggest that in vivo phosphorylation of the intermediate filament proteins desmin and vimentin is catalyzed by the cAMP-dependent protein kinases and that such phosphorylation may be regulated during muscle differentiation.

1982 ◽  
Vol 2 (9) ◽  
pp. 1104-1114
Author(s):  
D L Gard ◽  
E Lazarides

The intermediate filament proteins desmin and vimentin and the muscle tropomyosins were the major protein phosphate acceptors in 8-day-old myotubes incubated for 4 h in medium containing radiolabeled phosphate. The addition of isoproterenol or 8-bromo-cyclic AMP (BrcAMP) resulted in a two- to threefold increase in incorporation of 32PO4 into both desmin and vimentin, whereas no changes in the incorporation of 32PO4 into tropomyosin or other cellular proteins were observed. The BrcAMP- or hormonally induced increase in 32PO4 incorporation into desmin and vimentin was independent of protein synthesis and was not caused by stimulation of protein phosphate turnover. In addition, BrcAMP did not induce significant changes in the specific activity of the cellular ATP pool. These data suggest that the observed increase in 32PO4 incorporation represented an actual increase in phosphorylation of the intermediate filament proteins desmin and vimentin. Two-dimensional tryptic analysis of desmin from 8-day-old myotubes revealed five phosphopeptides of which two showed a 7- to 10-fold increase in 32PO4 incorporation in BrcAMP-treated myotubes. Four of the phosphopeptides identified in desmin labeled in vivo were also observed in desmin phosphorylated in vitro by bovine heart cAMP-dependent protein kinase. Although phosphorylation of desmin and vimentin was apparent in myogenic cells at all stages of differentiation, BrcAMP- and isoproterenol-induced increases in phosphorylation of these proteins were restricted to mature myotubes. These data strongly suggest that in vivo phosphorylation of the intermediate filament proteins desmin and vimentin is catalyzed by the cAMP-dependent protein kinases and that such phosphorylation may be regulated during muscle differentiation.


2000 ◽  
Vol 113 (13) ◽  
pp. 2471-2483 ◽  
Author(s):  
I. Hofmann ◽  
C. Mertens ◽  
M. Brettel ◽  
V. Nimmrich ◽  
M. Schnolzer ◽  
...  

Plakophilin 1 and 2 (PKP1, PKP2) are members of the arm-repeat protein family. They are both constitutively expressed in most vertebrate cells, in two splice forms named a and b, and display a remarkable dual location: they occur in the nuclei of cells and, in epithelial cells, at the plasma membrane within the desmosomal plaques. We have shown by solid phase-binding assays that both PKP1a and PKP2a bind to intermediate filament (IF) proteins, in particular to cytokeratins (CKs) from epidermal as well as simple epithelial cells and, to some extent, to vimentin. In line with this we show that recombinant PKP1a binds strongly to IFs assembled in vitro from CKs 8/18, 5/14, vimentin or desmin and integrates them into thick (up to 120 nm in diameter) IF bundles extending for several microm. The basic amino-terminal, non-arm-repeat domain of PKP1a is necessary and sufficient for this specific interaction as shown by blot overlay and centrifugation experiments. In particular, the binding of PKP1a to IF proteins is saturable at an approximately equimolar ratio. In extracts from HaCaT cells, distinct soluble complexes containing PKP1a and desmoplakin I (DPI) have been identified by co-immunoprecipitation and sucrose density fractionation. The significance of these interactions of PKP1a with IF proteins on the one hand and desmoplakin on the other is discussed in relation to the fact that PKP1a is not bound - and does not bind - to extended IFs in vivo. We postulate that (1) effective cellular regulatory mechanisms exist that prevent plakophilins from unscheduled IF-binding, and (2) specific desmoplakin interactions with either PKP1, PKP2 or PKP3, or combinations thereof, are involved in the selective recruitment of plakophilins to the desmosomal plaques.


1992 ◽  
Vol 12 (4) ◽  
pp. 1507-1514
Author(s):  
C L Denis ◽  
S C Fontaine ◽  
D Chase ◽  
B E Kemp ◽  
L T Bemis

Four ADR1c mutations that occur close to Ser-230 of the Saccharomyces cerevisiae transcriptional activator ADR1 and which greatly enhance the ability of ADR1 to activate ADH2 expression under glucose-repressed conditions have been shown to reduce or eliminate cyclic AMP-dependent protein kinase (cAPK) phosphorylation of Ser-230 in vitro. In addition, unregulated cAPK expression in vivo blocks ADH2 depression in an ADR1-dependent fashion in which ADR1c mutations display decreased sensitivity to unregulated cAPK activity. Taken together, these data have suggested that ADR1c mutations enhance ADR1 activity by blocking cAPK phosphorylation and inactivation of Ser-230. We have isolated and characterized an additional 17 ADR1c mutations, defining 10 different amino acid changes, that were located in the region defined by amino acids 227 through 239 of ADR1. Three observations, however, indicate that the ADR1c phenotype is not simply equivalent to a lack of cAPK phosphorylation. First, only some of these newly isolated ADR1c mutations affected the ability of yeast cAPK to phosphorylate corresponding synthetic peptides modeled on the 222 to 234 region of ADR1 in vitro. Second, we observed that strains lacking cAPK activity did not display enhanced ADH2 expression under glucose growth conditions. Third, when Ser-230 was mutated to a nonphosphorylatable residue, lack of cAPK activity led to a substantial increase in ADH2 expression under glucose-repressed conditions. Thus, while cAPK controls ADH2 expression and ADR1 is required for this control, cAPK acts by a mechanism that is independent of effects on ADR1 Ser-230. It was also observed that deletion of the ADR1c region resulted in an ADR1c phenotype. The ADR1c region is, therefore, involved in maintaining ADR1 in an inactive form. ADR1c mutations may block the binding of a repressor to ADR1 or alter the structure of ADR1 so that transcriptional activation regions become unmasked.


1991 ◽  
Vol 279 (3) ◽  
pp. 727-732 ◽  
Author(s):  
G B Sala-Newby ◽  
A K Campbell

cDNA coding for the luciferase in the firefly Photinus pyralis was amplified in vitro to generate cyclic AMP-dependent protein kinase phosphorylation sites. The DNA was transcribed and translated to generate light-emitting protein. A valine at position 217 was mutated to arginine to generate a site RRFS and the heptapeptide kemptide, the phosphorylation site of the porcine pyruvate kinase, was added at the N- or C-terminus of the luciferase. The proteins carrying phosphorylation sites were characterized for their specific activity, pI, effect of pH on the colour of the light emitted and effect of the catalytic subunit of protein kinase A in the presence of ATP. Only one of the recombinant proteins (RRFS) was significantly different from wild-type luciferase. The RRFS mutant had a lower specific activity, lower pH optimum, emitted greener light at low pH and when phosphorylated it decreased its activity by up to 80%. This latter effect was reversed by phosphatase. This recombinant protein is a good candidate to measure for the first time cyclic AMP-dependent phosphorylation in live cells.


1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485 ◽  
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


1977 ◽  
Vol 55 (4) ◽  
pp. 934-942 ◽  
Author(s):  
Thomas W. Dolby ◽  
Lewis J. Kleinsmith

The experiments presented in this paper examine the mechanisms underlying the ability of cannabinoids to alter the in vivo levels of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) in mouse brain. It was found that changes in cyclic AMP levels are a composite result of direct actions of cannabinoids on adenylate cyclase (EC 4.6.1.1) activity and indirect actions involving the potentiation or inhibition of biogenic amine induced activity of adenylate cyclase. Furthermore, the long-term intraperitoneal administration of 1-(−)-Δ-tetrahydrocannabinol to mice produced a form of phosphodiesterase (EC 3.1.4.17) in the brain whose activity is not stimulated by Ca2+, although its basal specific activity is similar to that of control animals. In vitro, the presence of the cannabinoids caused no significant changes in activity of brain PDE at the concentrations tested. Some correlations are presented which imply that many of the observed behavioral and physiological actions of the cannabinoids in mammalian organisms may be mediated via cyclic AMP mechanisms.


1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


1992 ◽  
Vol 12 (4) ◽  
pp. 1507-1514 ◽  
Author(s):  
C L Denis ◽  
S C Fontaine ◽  
D Chase ◽  
B E Kemp ◽  
L T Bemis

Four ADR1c mutations that occur close to Ser-230 of the Saccharomyces cerevisiae transcriptional activator ADR1 and which greatly enhance the ability of ADR1 to activate ADH2 expression under glucose-repressed conditions have been shown to reduce or eliminate cyclic AMP-dependent protein kinase (cAPK) phosphorylation of Ser-230 in vitro. In addition, unregulated cAPK expression in vivo blocks ADH2 depression in an ADR1-dependent fashion in which ADR1c mutations display decreased sensitivity to unregulated cAPK activity. Taken together, these data have suggested that ADR1c mutations enhance ADR1 activity by blocking cAPK phosphorylation and inactivation of Ser-230. We have isolated and characterized an additional 17 ADR1c mutations, defining 10 different amino acid changes, that were located in the region defined by amino acids 227 through 239 of ADR1. Three observations, however, indicate that the ADR1c phenotype is not simply equivalent to a lack of cAPK phosphorylation. First, only some of these newly isolated ADR1c mutations affected the ability of yeast cAPK to phosphorylate corresponding synthetic peptides modeled on the 222 to 234 region of ADR1 in vitro. Second, we observed that strains lacking cAPK activity did not display enhanced ADH2 expression under glucose growth conditions. Third, when Ser-230 was mutated to a nonphosphorylatable residue, lack of cAPK activity led to a substantial increase in ADH2 expression under glucose-repressed conditions. Thus, while cAPK controls ADH2 expression and ADR1 is required for this control, cAPK acts by a mechanism that is independent of effects on ADR1 Ser-230. It was also observed that deletion of the ADR1c region resulted in an ADR1c phenotype. The ADR1c region is, therefore, involved in maintaining ADR1 in an inactive form. ADR1c mutations may block the binding of a repressor to ADR1 or alter the structure of ADR1 so that transcriptional activation regions become unmasked.


1991 ◽  
Vol 277 (3) ◽  
pp. 863-868 ◽  
Author(s):  
D Sömjen ◽  
K D Schlüter ◽  
E Wingender ◽  
H Mayer ◽  
A M Kaye

We have found, in previous studies in vitro using skeletal derived cell cultures, that mid-region fragments of human parathyroid hormone (hPTH) stimulate [3H]thymidine incorporation into DNA and increase the specific activity of the brain-type isoenzyme of creatine kinase (CK). These changes occurred without an increase in cyclic AMP formation which is linked to bone resorption. In this study, we found that the mid-region fragment hPTH-(28-48) stimulated CK activity in diaphysis, epiphysis and kidney in a time- and dose-dependent manner, parallel to the effects of the whole molecule bovine (b)PTH-(1-84) and the fully active fragment hPTH-(1-34). The increase caused by hPTH-(28-48) at a dose of 1.25 micrograms/rat was not less than the 2-fold increase caused by a roughly equimolar concentration bPTH-(1-84). A significant increase was reached at 1 h after intraperitoneal injection in all cases. All three sequences of PTH caused an increase in [3H]thymidine incorporation into DNA in diaphysis and epiphysis, but not in kidney, 24 h after injection. A fragment further towards the C-terminal, hPTH-(34-47), was inactive compared with an equimolar concentration of the fragment hPTH-(25-39), which stimulated both CK activity and DNA synthesis. These results in vivo are in line with previous findings in vitro; they provide further support for the suggestion that mid-region fragments of the PTH molecule could be used to induce bone formation without incurring the deleterious effect of bone resorption.


1990 ◽  
Vol 111 (6) ◽  
pp. 3049-3064 ◽  
Author(s):  
P A Coulombe ◽  
Y M Chan ◽  
K Albers ◽  
E Fuchs

To investigate the sequences important for assembly of keratins into 10-nm filaments, we used a combined approach of (a) transfection of mutant keratin cDNAs into epithelial cells in vivo, and (b) in vitro assembly of mutant and wild-type keratins. Keratin K14 mutants missing the nonhelical carboxy- and amino-terminal domains not only integrated without perturbation into endogenous keratin filament networks in vivo, but they also formed 10-nm filaments with K5 in vitro. Surprisingly, keratin mutants missing the highly conserved L L E G E sequence, common to all intermediate filament proteins and found at the carboxy end of the alpha-helical rod domain, also assembled into filaments with only a somewhat reduced efficiency. Even a carboxy K14 mutant missing approximately 10% of the rod assembled into filaments, although in this case filaments aggregated significantly. Despite the ability of these mutants to form filaments in vitro, they often perturbed keratin filament organization in vivo. In contrast, small truncations in the amino-terminal end of the rod domain more severely disrupted the filament assembly process in vitro as well as in vivo, and in particular restricted elongation. For both carboxy and amino rod deletions, the more extensive the deletion, the more severe the phenotype. Surprisingly, while elongation could be almost quantitatively blocked with large mutations, tetramer formation and higher ordered lateral interactions still occurred. Collectively, our in vitro data (a) provide a molecular basis for the dominance of our mutants in vivo, (b) offer new insights as to why different mutants may generate different phenotypes in vivo, and (c) delineate the limit sequences necessary for K14 to both incorporate properly into a preexisting keratin filament network in vivo and assemble efficiently into 10-nm keratin filaments in vitro.


Sign in / Sign up

Export Citation Format

Share Document