scholarly journals MdmX Protects p53 from Mdm2-Mediated Degradation

2000 ◽  
Vol 20 (3) ◽  
pp. 1001-1007 ◽  
Author(s):  
Mark W. Jackson ◽  
Steven J. Berberich

ABSTRACT The p53 tumor suppressor protein is stabilized in response to cellular stress, resulting in activation of genes responsible for either cell cycle arrest or apoptosis. The cellular pathway for releasing normal cells from p53-dependent cell cycle arrest involves the Mdm2 protein. Recently, a p53-binding protein with homology to Mdm2 was identified and called MdmX. Like Mdm2, MdmX is able to bind p53 and inhibit p53 transactivation; however, the ability of MdmX to degrade p53 has yet to be examined. We report here that MdmX is capable of associating with p53 yet is unable to facilitate nuclear export or induce p53 degradation. In addition, expression of MdmX can reverse Mdm2-targeted degradation of p53 while maintaining suppression of p53 transactivation. Using a series of MdmX deletions, we have determined that there are two distinct domains of the MdmX protein that can stabilize p53 in the presence of Mdm2. One domain requires MdmX interaction with p53 and results in the retention of both proteins within the nucleus and repression of p53 transactivation. The second domain involves the MdmX ring finger and results in stabilization of p53 and an increase in p53 transactivation. The potential basis for stabilization and increased p53 transactivation by the MdmX ring finger domain is discussed. Based on these observations, we propose that the MdmX protein may function to maintain a nuclear pool of p53 protein in undamaged cells.

2007 ◽  
Vol 27 (11) ◽  
pp. 4166-4178 ◽  
Author(s):  
Luciana E. Giono ◽  
James J. Manfredi

ABSTRACT p53 is extensively posttranslationally modified in response to various types of cellular stress. Such modifications have been implicated in the regulation of p53 protein levels as well as its DNA binding and transcriptional activities. Treatment of cells with doxorubicin causes phosphorylation and acetylation of p53, transcriptional upregulation of p21 and other target genes, and growth arrest. In contrast, downregulation of Mdm2 by a small interfering RNA (siRNA) approach led to increased levels of p53 lacking phosphorylation at serine 15 and acetylation at lysine 382. Levels of binding of p53 to the p21 promoter were comparable following treatment with doxorubicin or Mdm2 siRNA. Moreover, p53 was transcriptionally active and capable of inducing or repressing a variety of its target genes. Surprisingly, p53 upregulated by Mdm2 siRNA had no effect on cell cycle progression. Although comparable in level to that achieved by treatment with the p53 activators actinomycin D and nutlin-3, the increases in p53 and p21 after downregulation of Mdm2 were not sufficient to trigger cell cycle arrest. This version of p21 was capable of interacting with cyclin-dependent kinase 2 (Cdk2) but failed to inhibit its activity. Taken together, these results argue that Mdm2 is needed for full inhibition of Cdk2 activity by p21, thereby positively contributing to p53-dependent cell cycle arrest.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1790
Author(s):  
Katarzyna Malarz ◽  
Jacek Mularski ◽  
Michał Kuczak ◽  
Anna Mrozek-Wilczkiewicz ◽  
Robert Musiol

Sulfonates, unlike their derivatives, sulphonamides, have rarely been investigated for their anticancer activity. Unlike the well-known sulphonamides, esters are mainly used as convenient intermediates in a synthesis. Here, we present the first in-depth investigation of quinazoline sulfonates. A small series of derivatives were synthesized and tested for their anticancer activity. Based on their structural similarity, these compounds resemble tyrosine kinase inhibitors and the p53 reactivator CP-31398. Their biological activity profile, however, was more related to sulphonamides because there was a strong cell cycle arrest in the G2/M phase. Further investigation revealed a multitargeted mechanism of the action that corresponded to the p53 protein status in the cell. Although the compounds expressed a high submicromolar activity against leukemia and colon cancers, pancreatic cancer and glioblastoma were also susceptible. Apoptosis and autophagy were confirmed as the cell death modes that corresponded with the inhibition of metabolic activity and the activation of the p53-dependent and p53-independent pathways. Namely, there was a strong activation of the p62 protein and GADD44. Other proteins such as cdc2 were also expressed at a higher level. Moreover, the classical caspase-dependent pathway in leukemia was observed at a lower concentration, which again confirmed a multitargeted mechanism. It can therefore be concluded that the sulfonates of quinazolines can be regarded as promising scaffolds for developing anticancer agents.


Cell Cycle ◽  
2005 ◽  
Vol 4 (3) ◽  
pp. 465-472 ◽  
Author(s):  
Stuart Gallagher ◽  
Richard F. Kefford ◽  
Helen Rizos

2008 ◽  
Vol 28 (13) ◽  
pp. 4365-4376 ◽  
Author(s):  
Mu-Shui Dai ◽  
Xiao-Xin Sun ◽  
Hua Lu

ABSTRACT The nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis. Both depletion and overexpression of NS reduce cell proliferation. However, the mechanisms underlying this regulation are still unclear. Here, we show that NS regulates p53 activity through the inhibition of MDM2. NS binds to the central acidic domain of MDM2 and inhibits MDM2-mediated p53 ubiquitylation and degradation. Consequently, ectopic overexpression of NS activates p53, induces G1 cell cycle arrest, and inhibits cell proliferation. Interestingly, the knockdown of NS by small interfering RNA also activates p53 and induces G1 arrest. These effects require the ribosomal proteins L5 and L11, since the depletion of NS enhanced their interactions with MDM2 and the knockdown of L5 or L11 abrogated the NS depletion-induced p53 activation and cell cycle arrest. These results suggest that a p53-dependent cell cycle checkpoint monitors changes of cellular NS levels via the impediment of MDM2 function.


Sign in / Sign up

Export Citation Format

Share Document