scholarly journals Role for E2F in Control of Both DNA Replication and Mitotic Functions as Revealed from DNA Microarray Analysis

2001 ◽  
Vol 21 (14) ◽  
pp. 4684-4699 ◽  
Author(s):  
Seiichi Ishida ◽  
Erich Huang ◽  
Harry Zuzan ◽  
Rainer Spang ◽  
Gustavo Leone ◽  
...  

ABSTRACT We have used high-density DNA microarrays to provide an analysis of gene regulation during the mammalian cell cycle and the role of E2F in this process. Cell cycle analysis was facilitated by a combined examination of gene control in serum-stimulated fibroblasts and cells synchronized at G1/S by hydroxyurea block that were then released to proceed through the cell cycle. The latter approach (G1/S synchronization) is critical for rigorously maintaining cell synchrony for unambiguous analysis of gene regulation in later stages of the cell cycle. Analysis of these samples identified seven distinct clusters of genes that exhibit unique patterns of expression. Genes tend to cluster within these groups based on common function and the time during the cell cycle that the activity is required. Placed in this context, the analysis of genes induced by E2F proteins identified genes or expressed sequence tags not previously described as regulated by E2F proteins; surprisingly, many of these encode proteins known to function during mitosis. A comparison of the E2F-induced genes with the patterns of cell growth-regulated gene expression revealed that virtually all of the E2F-induced genes are found in only two of the cell cycle clusters; one group was regulated at G1/S, and the second group, which included the mitotic activities, was regulated at G2. The activation of the G2 genes suggests a broader role for E2F in the control of both DNA replication and mitotic activities.

2000 ◽  
Vol 113 (17) ◽  
pp. 3085-3091 ◽  
Author(s):  
N. Guo ◽  
D.V. Faller ◽  
G.V. Denis

RING3 is a novel protein kinase linked to human leukaemia. Its Drosophila homologue female sterile homeotic is a developmental regulator that interacts genetically with trithorax, a human homologue of which is also associated with leukaemia. The RING3 structure contains two mutually related bromodomains that probably assist in the remodelling of chromatin and thereby affect transcription. Consistent with this hypothesis, a RING3-like protein has been identified in the mouse Mediator complex, where it is associated with transcription factors. We show that, whilst RING3 is constitutively localised to the nucleus of exponentially growing HeLa cells, it is delocalised throughout serum-starved fibroblasts. We use immunostaining and confocal microscopy to demonstrate that RING3 translocates to the fibroblast nucleus upon serum stimulation. After translocation, RING3 participates in nuclear protein complexes that include E2F proteins; it transactivates the promoters of several important mammalian cell cycle genes that are dependent on E2F, including dihydrofolate reductase, cyclin D1, cyclin A and cyclin E. We use site-directed mutagenesis of a putative nuclear localisation motif to show that the activation-induced nuclear localisation and consequent transcriptional activity of RING3 depends on a monopartite, classical nuclear localisation sequence. These observations refine and extend the mechanism by which RING3 contributes to E2F-regulated cell cycle progression. Deregulation of this mechanism may be leukaemogenic.


Sign in / Sign up

Export Citation Format

Share Document