corneal fibroblasts
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 40)

H-INDEX

33
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1682
Author(s):  
Vincent Yeung ◽  
Sriniwas Sriram ◽  
Jennifer A. Tran ◽  
Xiaoqing Guo ◽  
Audrey E. K. Hutcheon ◽  
...  

Corneal fibrosis (or scarring) occurs in response to ocular trauma or infection, and by reducing corneal transparency, it can lead to visual impairment and blindness. Studies highlight important roles for transforming growth factor (TGF)-β1 and -β3 as modulators in corneal wound healing and fibrosis, leading to increased extracellular matrix (ECM) components and expression of α-smooth muscle actin (αSMA), a myofibroblast marker. In this study, human corneal fibroblasts (hCF) were cultured as a monolayer culture (2D) or on poly-transwell membranes to generate corneal stromal constructs (3D) that were treated with TGF-β1, TGF-β3, or TGF-β1 + FAK inhibitor (FAKi). Results show that hCF 3D constructs treated with TGF-β1 or TGF-β3 impart distinct effects on genes involved in wound healing and fibrosis—ITGAV, ITGB1, SRC and ACTA2. Notably, in the 3D construct model, TGF-β1 enhanced αSMA and focal adhesion kinase (FAK) protein expression, whereas TGF-β3 did not. In addition, in both the hCF 2D cell and 3D construct models, we found that TGF-β1 + FAKi attenuated TGF-β1-mediated myofibroblast differentiation, as shown by abrogated αSMA expression. This study concludes that FAK signaling is important for the onset of TGF-β1-mediated myofibroblast differentiation, and FAK inhibition may provide a novel beneficial therapeutic avenue to reduce corneal scarring.


2021 ◽  
Author(s):  
Suxia Li ◽  
Qiaoqiao Dong ◽  
Muchen Dong ◽  
Mingli Qu ◽  
Yao Wang ◽  
...  

Abstract Introduction: Cell senescence plays a regulatory role in tissue fibrosis, and corneal scarring is usually more severe in the central cornea based on clinical observation. We attempted to explore the senescence difference between the central and peripheral cornea in an in vivo mouse model of suture-induced senescence and an in vitro model of senescence with hydrogen peroxide (H2O2)-induced rabbit corneal fibroblasts. Methods: Male Balb/c mice (6-8 weeks) received sutures in the central, superior, inferior, nasal, and temporal cornea, and the sutures were removed on day 14. Corneal neovascularization (CNV) was observed under a slit lamp microscope with a digital camera. Fibroblasts isolated from central and peripheral rabbit corneas were induced with H2O2 to establish an in vitro model of senescence. The senescence was evaluated with SA-β-gal staining and gene expression analysis of p21, p27, and p53. Results: Senescent cells accumulated in the corneal stroma from day 3 to day 14 after the operation and peaked on day 14, later than CNV. More senescent keratocytes were observed in the peripheral cornea in the mouse model. The peripheral corneal fibroblasts were more likely to become senescent related to H2O2 in vitro. The PCR results revealed that the senescence-related genes, p21, p27, and p53, were all highly expressed in the peripheral corneal fibroblasts. Conclusions: As senescent fibroblasts can limit tissue fibrosis, the senescence difference between the central and peripheral cornea may contribute to the difference in scarring.


2021 ◽  
Vol 22 (16) ◽  
pp. 8979
Author(s):  
Teruo Nishida ◽  
Koji Sugioka ◽  
Ken Fukuda ◽  
Junko Murakami

The shape and transparency of the cornea are essential for clear vision. However, its location at the ocular surface renders the cornea vulnerable to pathogenic microorganisms in the external environment. Pseudomonas aeruginosa and Staphylococcus aureus are two such microorganisms and are responsible for most cases of bacterial keratitis. The development of antimicrobial agents has allowed the successful treatment of bacterial keratitis if the infection is diagnosed promptly. However, no effective medical treatment is available after progression to corneal ulcer, which is characterized by excessive degradation of collagen in the corneal stroma and can lead to corneal perforation and corneal blindness. This collagen degradation is mediated by both infecting bacteria and corneal fibroblasts themselves, with a urokinase-type plasminogen activator (uPA)-plasmin-matrix metalloproteinase (MMP) cascade playing a central role in collagen destruction by the host cells. Bacterial factors stimulate the production by corneal fibroblasts of both uPA and pro-MMPs, released uPA mediates the conversion of plasminogen in the extracellular environment to plasmin, and plasmin mediates the conversion of secreted pro-MMPs to the active form of these enzymes, which then degrade stromal collagen. Bacterial factors also stimulate expression by corneal fibroblasts of the chemokine interleukin-8 and the adhesion molecule ICAM-1, both of which contribute to recruitment and activation of polymorphonuclear neutrophils, and these cells then further stimulate corneal fibroblasts via the secretion of interleukin-1. At this stage of the disease, bacteria are no longer necessary for collagen degradation. In this review, we discuss the pivotal role of corneal fibroblasts in corneal ulcer associated with infection by P. aeruginosa or S. aureus as well as the development of potential new modes of treatment for this condition.


Author(s):  
Adrián Ramírez-Granillo ◽  
Luis Antonio Bautista-Hernández ◽  
Víctor Manuel Bautista-De Lucío ◽  
Fátima Sofía Magaña-Guerrero ◽  
Alfredo Domínguez-López ◽  
...  

BackgroundCoinfections with fungi and bacteria in ocular pathologies are increasing at an alarming rate. Two of the main etiologic agents of infections on the corneal surface, such as Aspergillus fumigatus and Staphylococcus aureus, can form a biofilm. However, mixed fungal–bacterial biofilms are rarely reported in ocular infections. The implementation of cell cultures as a study model related to biofilm microbial keratitis will allow understanding the pathogenesis in the cornea. The cornea maintains a pathogen-free ocular surface in which human limbo-corneal fibroblast cells are part of its cell regeneration process. There are no reports of biofilm formation assays on limbo-corneal fibroblasts, as well as their behavior with a polymicrobial infection.ObjectiveTo determine the capacity of biofilm formation during this fungal–bacterial interaction on primary limbo-corneal fibroblast monolayers.ResultsThe biofilm on the limbo-corneal fibroblast culture was analyzed by assessing biomass production and determining metabolic activity. Furthermore, the mixed biofilm effect on this cell culture was observed with several microscopy techniques. The single and mixed biofilm was higher on the limbo-corneal fibroblast monolayer than on abiotic surfaces. The A. fumigatus biofilm on the human limbo-corneal fibroblast culture showed a considerable decrease compared to the S. aureus biofilm on the limbo-corneal fibroblast monolayer. Moreover, the mixed biofilm had a lower density than that of the single biofilm. Antibiosis between A. fumigatus and S. aureus persisted during the challenge to limbo-corneal fibroblasts, but it seems that the fungus was more effectively inhibited.ConclusionThis is the first report of mixed fungal–bacterial biofilm production and morphological characterization on the limbo-corneal fibroblast monolayer. Three antibiosis behaviors were observed between fungi, bacteria, and limbo-corneal fibroblasts. The mycophagy effect over A. fumigatus by S. aureus was exacerbated on the limbo-corneal fibroblast monolayer. During fungal–bacterial interactions, it appears that limbo-corneal fibroblasts showed some phagocytic activity, demonstrating tripartite relationships during coinfection.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2076
Author(s):  
Tina B. McKay ◽  
Shrestha Priyadarsini ◽  
Tyler Rowsey ◽  
Dimitrios Karamichos

Keratoconus (KC) is a common corneal ectatic disease that affects 1:500–1:2000 people worldwide and is associated with a progressive thinning of the corneal stroma that may lead to severe astigmatism and visual deficits. Riboflavin-mediated collagen crosslinking currently remains the only approved treatment to halt progressive corneal thinning associated with KC by improving the biomechanical properties of the stroma. Treatments designed to increase collagen deposition by resident corneal stromal keratocytes remain elusive. In this study, we evaluated the effects of arginine supplementation on steady-state levels of arginine and arginine-related metabolites (e.g., ornithine, proline, hydroxyproline, spermidine, and putrescine) and collagen protein expression by primary human corneal fibroblasts isolated from KC and non-KC (healthy) corneas and cultured in an established 3D in vitro model. We identified lower cytoplasmic arginine and spermidine levels in KC-derived constructs compared to healthy controls, which corresponded with overall higher gene expression of arginase. Arginine supplementation led to a robust increase in cytoplasmic arginine, ornithine, and spermidine levels in controls only and a significant increase in collagen type I secretion in KC-derived constructs. Further studies evaluating safety and efficacy of arginine supplementation are required to elucidate the potential therapeutic applications of modulating collagen deposition in the context of KC.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Thi N. Lam ◽  
Sarah E. Nicholas ◽  
Alexander Choi ◽  
Jian-Xing Ma ◽  
Dimitrios Karamichos

Diabetic keratopathy is a corneal complication of diabetes mellitus (DM). Patients with diabetic keratopathy are prone to developing corneal haze, scarring, recurrent erosions, and significant wound healing defects/delays. The purpose of this study was to determine the contractility profiles in the diabetic human corneal stromal cells and characterize their molecular signatures. Primary human corneal fibroblasts from healthy, Type 1 DM (T1DM), and Type 2 DM (T2DM) donors were cultured using an established 3D collagen gel model. We tracked, measured, and quantified the contractile footprint over 9 days and quantified the modulation of specific corneal/diabetes markers in the conditional media and cell lysates using western blot analysis. Human corneal fibroblasts (HCFs) exhibited delayed and decreased contractility compared to that from T1DMs and T2DMs. Compared to HCFs, T2DMs demonstrated an initial downregulation of collagen I (day 3), followed by a significant upregulation by day 9. Collagen V was significantly upregulated in both T1DMs and T2DMs based on basal secretion, when compared to HCFs. Cell lysates were upregulated in the myofibroblast-associated marker, α-smooth muscle actin, in T2DMs on day 9, corresponding to the significant increase in contractility rate observed at the same time point. Furthermore, our data demonstrated a significant upregulation in IGF-1 expression in T2DMs, when compared to HCFs and T1DMs, at day 9. T1DMs demonstrated significant downregulation of IGF-1 expression, when compared to HCFs. Overall, both T1DMs and T2DMs exhibited increased contractility associated with fibrotic phenotypes. These findings, and future studies, may contribute to better understanding of the pathobiology of diabetic keratopathy and ultimately the development of new therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document