scholarly journals Characterization of yeast strains with conditionally expressed variants of ribosomal protein genes tcm1 and cyh2

1985 ◽  
Vol 5 (1) ◽  
pp. 99-108
Author(s):  
H M Fried ◽  
H G Nam ◽  
S Loechel ◽  
J Teem

We placed a regulatory sequence derived from the GAL10 locus of Saccharomyces cerevisiae at various distances from the start sites of transcription of two yeast ribosomal protein genes, tcm1 and cyh2. The hybrid ribosomal protein genes were transcribed at wild-type levels in the presence of galactose. In the absence of galactose, the hybrid genes were transcribed either at a reduced level or essentially not at all. Yeast cells which transcribe the ribosomal protein genes at a reduced rate continued to grow, suggesting that enhanced translation of the ribosomal protein mRNA may permit an adequate rate of synthesis of the corresponding protein. Consistent with this suggestion is the finding that preexisting mRNA decayed at a reduced rate when transcription was halted abruptly by removal of galactose. Yeast cells unable to transcribe tcm1 or cyh2 without galactose did not grow. These conditional lethal strains demonstrate that the ribosomal proteins encoded by tcm1 and cyh2 are essential; furthermore, these strains are potentially useful for isolating mutations in the tcm1 and cyh2 proteins affecting their transport, assembly, or function.

1985 ◽  
Vol 5 (1) ◽  
pp. 99-108 ◽  
Author(s):  
H M Fried ◽  
H G Nam ◽  
S Loechel ◽  
J Teem

We placed a regulatory sequence derived from the GAL10 locus of Saccharomyces cerevisiae at various distances from the start sites of transcription of two yeast ribosomal protein genes, tcm1 and cyh2. The hybrid ribosomal protein genes were transcribed at wild-type levels in the presence of galactose. In the absence of galactose, the hybrid genes were transcribed either at a reduced level or essentially not at all. Yeast cells which transcribe the ribosomal protein genes at a reduced rate continued to grow, suggesting that enhanced translation of the ribosomal protein mRNA may permit an adequate rate of synthesis of the corresponding protein. Consistent with this suggestion is the finding that preexisting mRNA decayed at a reduced rate when transcription was halted abruptly by removal of galactose. Yeast cells unable to transcribe tcm1 or cyh2 without galactose did not grow. These conditional lethal strains demonstrate that the ribosomal proteins encoded by tcm1 and cyh2 are essential; furthermore, these strains are potentially useful for isolating mutations in the tcm1 and cyh2 proteins affecting their transport, assembly, or function.


2013 ◽  
Vol 12 (3) ◽  
pp. 450-459 ◽  
Author(s):  
Rongpeng Li ◽  
Xuesong Li ◽  
Lei Sun ◽  
Feifei Chen ◽  
Zhenxing Liu ◽  
...  

ABSTRACTDeletion of ribosomal protein L32 genes resulted in a nonsexual flocculation of fission yeast. Nonsexual flocculation also occurred when two other ribosomal protein genes,rpl21-2andrpl9-2, were deleted. However, deletion of two nonribosomal protein genes,mpgandfbp, did not cause flocculation. Overall transcript levels ofrpl32inrpl32-1Δ andrpl32-2Δ cells were reduced by 35.9% and 46.9%, respectively, and overall ribosome levels inrpl32-1Δ andrpl32-2Δ cells dropped 31.1% and 27.8%, respectively, compared to wild-type cells. Interestingly, ribosome protein expression levels and ribosome levels were also reduced greatly in sexually flocculating diploid YHL6381/WT (h+/h−) cells compared to a mixture of YHL6381 (h+) and WT (h−) nonflocculating haploid cells. Transcriptome analysis indicated that the reduction of ribosomal levels in sexual flocculating cells was caused by more-extensive suppression of ribosomal biosynthesis gene expression, while the reduction of ribosomal levels caused by deleting ribosomal protein genes in nonsexual flocculating cells was due to an imbalance between ribosomal proteins. We propose that once the reduction of ribosomal levels is below a certain threshold value, flocculation is triggered.


1983 ◽  
Vol 3 (3) ◽  
pp. 457-465
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 877-885 ◽  
Author(s):  
Stein Saeboe-Larssen ◽  
Andrew Lambertsson

Abstract Minutes comprise >50 phenotypically similar Drosophila mutations believed to affect ribosomal protein genes. Common traits of the Minute phenotype are short and thin bristles, slow development, and recessive lethality. To further investigate the proposed Minute to ribosomal protein correspondence, loss-of-function Minute mutations were induced by P-element mutagenesis. Here, we report a previously undescribed Minute locus that maps to 32A on chromosome 2L; this Minute allele is named P{lac-W}M(2)32A1 and the gene M(2)32A. Flies heterozygous for P{lacW}M(2)32A1 have a medium Minute phenotype. The gene interrupted by the P-element insertion was cloned. Sequence analyses revealed that it encodes the Drosophila homologue of eukaryotic ribosomal protein S13. It is a singlecopy gene and the level of RPS13 transcript is reduced to ~50% in P{lacW}M(2)32A1 heterozygotes. Both transcript level and phenotype are restored to wild type by remobilizing the P element, demonstrating that the mutation is caused by insertion of the P-element construct. These results further strengthen the notion that Minutes encode ribosomal proteins and demonstrate that P-element mutagenesis is a fruitful approach to use in these studies.


1983 ◽  
Vol 3 (3) ◽  
pp. 457-465 ◽  
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 375-386 ◽  
Author(s):  
A Vincent ◽  
S W Liebman

Abstract The accurate synthesis of proteins is crucial to the existence of a cell. In yeast, several genes that affect the fidelity of translation have been identified (e.g., omnipotent suppressors, antisuppressors and allosuppressors). We have found that the dominant omnipotent suppressor SUP46 encodes the yeast ribosomal protein S13. S13 is encoded by two similar genes, but only the sup46 copy of the gene is able to fully complement the recessive phenotypes of SUP46 mutations. Both copies of the S13 genes contain introns. Unlike the introns of other duplicated ribosomal protein genes which are highly diverged, the duplicated S13 genes have two nearly identical DNA sequences of 25 and 31 bp in length within their introns. The SUP46 protein has significant homology to the S4 ribosomal protein in prokaryotic-type ribosomes. S4 is encoded by one of the ram (ribosomal ambiguity) genes in Escherichia coli which are the functional equivalent of omnipotent suppressors in yeast. Thus, SUP46 and S4 demonstrate functional as well as sequence conservation between prokaryotic and eukaryotic ribosomal proteins. SUP46 and S4 are most similar in their central amino acid sequences. Interestingly, the alterations resulting from the SUP46 mutations and the segment of the S4 protein involved in binding to the 16S rRNA are within this most conserved region.


1990 ◽  
Vol 10 (10) ◽  
pp. 5235-5243 ◽  
Author(s):  
D M Baronas-Lowell ◽  
J R Warner

In the yeast Saccharomyces cerevisiae, L30 is one of many ribosomal proteins that is encoded by two functional genes. We have cloned and sequenced RPL30B, which shows strong homology to RPL30A. Use of mRNA as a template for a polymerase chain reaction demonstrated that RPL30B contains an intron in its 5' untranslated region. This intron has an unusual 5' splice site, C/GUAUGU. The genomic copies of RPL30A and RPL30B were disrupted by homologous recombination. Growth rates, primer extension, and two-dimensional ribosomal protein analyses of these disruption mutants suggested that RPL30A is responsible for the majority of L30 production. Surprisingly, meiosis of a diploid strain carrying one disrupted RPL30A and one disrupted RPL30B yielded four viable spores. Ribosomes from haploid cells carrying both disrupted genes had no detectable L30, yet such cells grew with a doubling time only 30% longer than that of wild-type cells. Furthermore, depletion of L30 did not alter the ratio of 60S to 40S ribosomal subunits, suggesting that there is no serious effect on the assembly of 60S subunits. Polysome profiles, however, suggest that the absence of L30 leads to the formation of stalled translation initiation complexes.


1990 ◽  
Vol 10 (10) ◽  
pp. 5235-5243
Author(s):  
D M Baronas-Lowell ◽  
J R Warner

In the yeast Saccharomyces cerevisiae, L30 is one of many ribosomal proteins that is encoded by two functional genes. We have cloned and sequenced RPL30B, which shows strong homology to RPL30A. Use of mRNA as a template for a polymerase chain reaction demonstrated that RPL30B contains an intron in its 5' untranslated region. This intron has an unusual 5' splice site, C/GUAUGU. The genomic copies of RPL30A and RPL30B were disrupted by homologous recombination. Growth rates, primer extension, and two-dimensional ribosomal protein analyses of these disruption mutants suggested that RPL30A is responsible for the majority of L30 production. Surprisingly, meiosis of a diploid strain carrying one disrupted RPL30A and one disrupted RPL30B yielded four viable spores. Ribosomes from haploid cells carrying both disrupted genes had no detectable L30, yet such cells grew with a doubling time only 30% longer than that of wild-type cells. Furthermore, depletion of L30 did not alter the ratio of 60S to 40S ribosomal subunits, suggesting that there is no serious effect on the assembly of 60S subunits. Polysome profiles, however, suggest that the absence of L30 leads to the formation of stalled translation initiation complexes.


1989 ◽  
Vol 9 (12) ◽  
pp. 5281-5288
Author(s):  
W M Wormington

Ribosomal protein L5 binds specifically to 5S rRNA to form a complex that is a precursor to 60S subunit assembly in vivo. Analyses in yeast cells, mammalian cells, and Xenopus embryos have shown that the accumulation of L5 is not coordinated with the expression of other ribosomal proteins. In this study, the primary structure and developmental expression of Xenopus ribosomal protein L5 were examined to determine the basis for its distinct regulation. These analyses showed that L5 expression could either coincide with 5S rRNA synthesis and ribosome assembly or be controlled independently of these events at different stages of Xenopus development. L5 synthesis during oogenesis was uncoupled from the accumulation of 5S rRNa but coincided with subunit assembly. In early embryos, the inefficient translation of L5 mRNA resulted in the accumulation of a stable L5-5S rRNA complex before ribosome assembly at later stages of development. Additional results demonstrated that L5 protein synthesized in vitro bound specifically to 5S rRNA.


Sign in / Sign up

Export Citation Format

Share Document