scholarly journals A complex control region of the mouse rRNA gene directs accurate initiation by RNA polymerase I.

1985 ◽  
Vol 5 (3) ◽  
pp. 554-562 ◽  
Author(s):  
K G Miller ◽  
J Tower ◽  
B Sollner-Webb

To determine the size and location of the mouse rDNA promoter, we constructed systematic series of deletion mutants approaching the initiation site from the 5' and 3' directions. These templates were transcribed in vitro under various conditions with S-100 and whole-cell extracts. Surprisingly, the size of the rDNA region that determines the level of transcription differed markedly, depending on the reaction conditions. In both kinds of cell extracts, the apparent 5' border of the promoter was at residue ca. -27 under optimal transcription conditions, but as reaction conditions became less favorable, the 5' border moved progressively out to residues -35, -39, and -45. The complete promoter, however, extends considerably further, for under other nonoptimal conditions, we observed major effects of promoter domains extending in the 5' direction to positions ca. -100 and -140. In contrast, the apparent 3' border of the mouse rDNA promoter was at residue ca. +9 under all conditions examined. We also show that the subcloned rDNA region from -39 to +9 contains sufficient information to initiate accurately and that the region between +2 and +9 can influence the specificity of initiation. These data indicate that, although the polymerase I transcription factors recognize and accurately initiate with only the sequences downstream of residue -40, sequences extending out to residue -140 greatly favor the initiation reaction; presumably, this entire region is involved in rRNA transcription in vivo.

1985 ◽  
Vol 5 (3) ◽  
pp. 554-562
Author(s):  
K G Miller ◽  
J Tower ◽  
B Sollner-Webb

To determine the size and location of the mouse rDNA promoter, we constructed systematic series of deletion mutants approaching the initiation site from the 5' and 3' directions. These templates were transcribed in vitro under various conditions with S-100 and whole-cell extracts. Surprisingly, the size of the rDNA region that determines the level of transcription differed markedly, depending on the reaction conditions. In both kinds of cell extracts, the apparent 5' border of the promoter was at residue ca. -27 under optimal transcription conditions, but as reaction conditions became less favorable, the 5' border moved progressively out to residues -35, -39, and -45. The complete promoter, however, extends considerably further, for under other nonoptimal conditions, we observed major effects of promoter domains extending in the 5' direction to positions ca. -100 and -140. In contrast, the apparent 3' border of the mouse rDNA promoter was at residue ca. +9 under all conditions examined. We also show that the subcloned rDNA region from -39 to +9 contains sufficient information to initiate accurately and that the region between +2 and +9 can influence the specificity of initiation. These data indicate that, although the polymerase I transcription factors recognize and accurately initiate with only the sequences downstream of residue -40, sequences extending out to residue -140 greatly favor the initiation reaction; presumably, this entire region is involved in rRNA transcription in vivo.


1985 ◽  
Vol 5 (7) ◽  
pp. 1582-1590
Author(s):  
V C Culotta ◽  
R J Wides ◽  
B Sollner-Webb

RNA synthesis in eucaryotes takes place on template molecules that are activated by stably associating with limiting transcription factors. In this paper we demonstrate that such stable transcription complexes can be specifically sedimented from in vitro transcription reaction mixtures by mild centrifugation. This occurs with stable complexes of genes transcribed by all three classes of eucaryotic RNA polymerase and with S-100 as well as whole-cell extracts. However, the transcriptional capacity of the isolated complex differs for the three polymerase classes. The pelleted ribosomal DNA (polymerase I) complex contains all the factors necessary for transcription, each purified 25- to 50-fold, whereas the pelleted adenovirus major late promoter (polymerase II) complex lacks a factor that remains in the supernatant. In the case of 5S DNA (polymerase III), a necessary factor associates slowly with the sedimentable complex. Notably, the interactions responsible for this rapid sedimentation are specific for DNA molecules in stable complexes, suggesting that the in vitro sedimentable complex mirrors the in vivo structural organization of active genes.


1985 ◽  
Vol 5 (7) ◽  
pp. 1582-1590 ◽  
Author(s):  
V C Culotta ◽  
R J Wides ◽  
B Sollner-Webb

RNA synthesis in eucaryotes takes place on template molecules that are activated by stably associating with limiting transcription factors. In this paper we demonstrate that such stable transcription complexes can be specifically sedimented from in vitro transcription reaction mixtures by mild centrifugation. This occurs with stable complexes of genes transcribed by all three classes of eucaryotic RNA polymerase and with S-100 as well as whole-cell extracts. However, the transcriptional capacity of the isolated complex differs for the three polymerase classes. The pelleted ribosomal DNA (polymerase I) complex contains all the factors necessary for transcription, each purified 25- to 50-fold, whereas the pelleted adenovirus major late promoter (polymerase II) complex lacks a factor that remains in the supernatant. In the case of 5S DNA (polymerase III), a necessary factor associates slowly with the sedimentable complex. Notably, the interactions responsible for this rapid sedimentation are specific for DNA molecules in stable complexes, suggesting that the in vitro sedimentable complex mirrors the in vivo structural organization of active genes.


1987 ◽  
Vol 7 (1) ◽  
pp. 314-325
Author(s):  
C A Harrington ◽  
D M Chikaraishi

The transcriptional activity of spacer sequences flanking the rat 45S ribosomal DNA (rDNA) gene were studied. Nascent RNA labeled in in vitro nuclear run-on reactions hybridized with both 5' and 3' spacer regions. The highest level of hybridization was seen with an rDNA fragment containing tandem repeats of a 130-base-pair sequence upstream of the 45S rRNA initiation site. Synthesis of RNA transcripts homologous to this internally repetitious spacer region was insensitive to high levels of alpha-amanitin, suggesting that it is mediated by RNA polymerase I. Analysis of steady-state RNA showed that these transcripts were present at extremely low levels in vivo relative to precursor rRNA transcripts. In contrast, precursor and spacer run-on RNAs were synthesized at similar levels. This suggests that spacer transcripts are highly unstable in vivo; therefore, it may be the process of transcription rather than the presence of spacer transcripts that is functionally important. Transcription in this upstream rDNA region may be involved in regulation of 45S rRNA synthesis in rodents, as has been suggested previously for frog rRNA. In addition, the presence of transcriptional activity in other regions of the spacer suggests that some polymerase I molecules may transcribe through the spacer from one 45S gene to the next on rodent rDNA.


1987 ◽  
Vol 7 (1) ◽  
pp. 314-325 ◽  
Author(s):  
C A Harrington ◽  
D M Chikaraishi

The transcriptional activity of spacer sequences flanking the rat 45S ribosomal DNA (rDNA) gene were studied. Nascent RNA labeled in in vitro nuclear run-on reactions hybridized with both 5' and 3' spacer regions. The highest level of hybridization was seen with an rDNA fragment containing tandem repeats of a 130-base-pair sequence upstream of the 45S rRNA initiation site. Synthesis of RNA transcripts homologous to this internally repetitious spacer region was insensitive to high levels of alpha-amanitin, suggesting that it is mediated by RNA polymerase I. Analysis of steady-state RNA showed that these transcripts were present at extremely low levels in vivo relative to precursor rRNA transcripts. In contrast, precursor and spacer run-on RNAs were synthesized at similar levels. This suggests that spacer transcripts are highly unstable in vivo; therefore, it may be the process of transcription rather than the presence of spacer transcripts that is functionally important. Transcription in this upstream rDNA region may be involved in regulation of 45S rRNA synthesis in rodents, as has been suggested previously for frog rRNA. In addition, the presence of transcriptional activity in other regions of the spacer suggests that some polymerase I molecules may transcribe through the spacer from one 45S gene to the next on rodent rDNA.


1987 ◽  
Vol 7 (7) ◽  
pp. 2388-2396
Author(s):  
B G Cassidy ◽  
H F Yang-Yen ◽  
L I Rothblum

We identified and characterized an additional promoter within the nontranscribed spacer (NTS) of the rat ribosomal gene repeat that is capable of supporting initiation of transcription by RNA polymerase I in vitro. Within this promoter there is a sequence of 13 nucleotides which is 100% homologous to nucleotides -18 to -6 (+1 being the first nucleotide of 45S rRNA) of the major promoter of 45S pre-rRNA and is located between nucleotides -731 and -719. To identify the exact location of the upstream initiation site, the RNA synthesized in vitro from this new promoter was gel isolated and subjected to fingerprint analysis, Southern hybridization, and reverse transcriptase elongation. Based on these analyses, the in vitro-synthesized RNA initiates with an A at nucleotide -713. When compared individually, the upstream promoter was transcribed ninefold less efficiently than the major promoter. When templates which contain both promoters on the same piece of DNA were transcribed, the major promoter was at least 50-fold more efficient.


1994 ◽  
Vol 14 (7) ◽  
pp. 5010-5021 ◽  
Author(s):  
R P Brun ◽  
K Ryan ◽  
B Sollner-Webb

Factor C* is the component of the RNA polymerase I holoenzyme (factor C) that allows specific transcriptional initiation on a factor D (SL1)- and UBF-activated rRNA gene promoter. The in vitro transcriptional capacity of a preincubated rDNA promoter complex becomes exhausted very rapidly upon initiation of transcription. This is due to the rapid depletion of C* activity. In contrast, C* activity is not unstable in the absence of transcription, even in the presence of nucleoside triphosphates (NTPs). By using 3'dNTPs to specifically halt elongation, C* is seen to remain active through transcription complex assembly, initiation, and the first approximately 37 nucleotides of elongation, but it is inactivated before synthesis proceeds beyond approximately 40 nucleotides. When elongation is halted before this critical distance, the C* remains active and on that template complex, greatly extending the kinetics of transcription and generating manyfold more transcripts than would have been synthesized if elongation had proceeded past the critical distance where C* is inactivated. In complementary in vivo analysis under conditions where C* activity is not replenished, C* activity becomes depleted from cells, but this also occurs only when there is ongoing rDNA transcription. Thus, both in vitro and in vivo, the specific initiation-conferring component of the RNA polymerase I holoenzyme is used stoichiometrically in the transcription process.


1989 ◽  
Vol 9 (11) ◽  
pp. 5093-5104 ◽  
Author(s):  
L K Pape ◽  
J J Windle ◽  
E B Mougey ◽  
B Sollner-Webb

Although it is generally believed that the 60- and 81-base-pair (60/81-bp) repeats of the Xenopus laevis ribosomal DNA (rDNA) spacer are position-independent transcriptional enhancers, this has not been shown directly. We have now developed a critical assay which proves that the 60/81-bp repeats do, in fact, stimulate transcription from promoters in cis and that they function in both orientations and when up to 1 kilobase pair from the initiation site. However, contrary to the widely accepted view, these elements are found to be highly position dependent, for they have no net effect when downstream of the initiation site within the transcribed region and they behave as transcriptional silencers of promoters in cis when moved greater than 2 kilobase pairs upstream of the initiation site. The 60/81-bp elements therefore are position-dependent 5' enhancers. We also found that this rDNA enhancer was polymerase I specific and that it was composed of duplicated, individually functional elements. Finally, we report an in vitro system that reproduces both cis enhancement and trans competition by the 60/81-bp repeats. Sequential-addition studies in this system demonstrated that the rDNA enhancer functions in trans at or before establishment of the stable transcription complex, not subsequently at each round of transcription.


1987 ◽  
Vol 7 (7) ◽  
pp. 2388-2396 ◽  
Author(s):  
B G Cassidy ◽  
H F Yang-Yen ◽  
L I Rothblum

We identified and characterized an additional promoter within the nontranscribed spacer (NTS) of the rat ribosomal gene repeat that is capable of supporting initiation of transcription by RNA polymerase I in vitro. Within this promoter there is a sequence of 13 nucleotides which is 100% homologous to nucleotides -18 to -6 (+1 being the first nucleotide of 45S rRNA) of the major promoter of 45S pre-rRNA and is located between nucleotides -731 and -719. To identify the exact location of the upstream initiation site, the RNA synthesized in vitro from this new promoter was gel isolated and subjected to fingerprint analysis, Southern hybridization, and reverse transcriptase elongation. Based on these analyses, the in vitro-synthesized RNA initiates with an A at nucleotide -713. When compared individually, the upstream promoter was transcribed ninefold less efficiently than the major promoter. When templates which contain both promoters on the same piece of DNA were transcribed, the major promoter was at least 50-fold more efficient.


2007 ◽  
Vol 73 (22) ◽  
pp. 7192-7198 ◽  
Author(s):  
Lawrence P. Wackett ◽  
Janice A. Frias ◽  
Jennifer L. Seffernick ◽  
David J. Sukovich ◽  
Stephan M. Cameron

ABSTRACT Vibrio furnissii M1 was recently reported to biosynthesize n-alkanes when grown on biopolymers, sugars, or organic acids (M. O. Park, J. Bacteriol. 187:1426-1429, 2005). In the present study, V. furnissii M1 was subjected to genomic analysis and studied biochemically. The sequence of the 16S rRNA gene and repetitive PCR showed that V. furnissii M1 was not identical to other V. furnissii strains tested, but the level of relatedness was consistent with its assignment as a V. furnissii strain. Pulsed-field gel electrophoresis showed chromosomal bands at approximately 3.2 and 1.8 Mb, similar to other Vibrio strains. Complete genomic DNA from V. furnissii M1 was sequenced with 21-fold coverage. Alkane biosynthetic and degradation genes could not be identified. Moreover, V. furnissii M1 did not produce demonstrable levels of n-alkanes in vivo or in vitro. In vivo experiments were conducted by growing V. furnissii M1 under different conditions, extracting with solvent, and analyzing extracts by gas chromatography-mass spectrometry. A highly sensitive assay was used for in vitro experiments with cell extracts and [14C]hexadecanol. The data are consistent with the present strain being a V. furnissii with properties similar to those previously described but lacking the alkane-producing phenotype. V. furnissii ATCC 35016, also reported to biosynthesize alkanes, was found in the present study not to produce alkanes.


Sign in / Sign up

Export Citation Format

Share Document