scholarly journals The Xenopus ribosomal DNA 60- and 81-base-pair repeats are position-dependent enhancers that function at the establishment of the preinitiation complex: analysis in vivo and in an enhancer-responsive in vitro system.

1989 ◽  
Vol 9 (11) ◽  
pp. 5093-5104 ◽  
Author(s):  
L K Pape ◽  
J J Windle ◽  
E B Mougey ◽  
B Sollner-Webb

Although it is generally believed that the 60- and 81-base-pair (60/81-bp) repeats of the Xenopus laevis ribosomal DNA (rDNA) spacer are position-independent transcriptional enhancers, this has not been shown directly. We have now developed a critical assay which proves that the 60/81-bp repeats do, in fact, stimulate transcription from promoters in cis and that they function in both orientations and when up to 1 kilobase pair from the initiation site. However, contrary to the widely accepted view, these elements are found to be highly position dependent, for they have no net effect when downstream of the initiation site within the transcribed region and they behave as transcriptional silencers of promoters in cis when moved greater than 2 kilobase pairs upstream of the initiation site. The 60/81-bp elements therefore are position-dependent 5' enhancers. We also found that this rDNA enhancer was polymerase I specific and that it was composed of duplicated, individually functional elements. Finally, we report an in vitro system that reproduces both cis enhancement and trans competition by the 60/81-bp repeats. Sequential-addition studies in this system demonstrated that the rDNA enhancer functions in trans at or before establishment of the stable transcription complex, not subsequently at each round of transcription.

1989 ◽  
Vol 9 (11) ◽  
pp. 5093-5104
Author(s):  
L K Pape ◽  
J J Windle ◽  
E B Mougey ◽  
B Sollner-Webb

Although it is generally believed that the 60- and 81-base-pair (60/81-bp) repeats of the Xenopus laevis ribosomal DNA (rDNA) spacer are position-independent transcriptional enhancers, this has not been shown directly. We have now developed a critical assay which proves that the 60/81-bp repeats do, in fact, stimulate transcription from promoters in cis and that they function in both orientations and when up to 1 kilobase pair from the initiation site. However, contrary to the widely accepted view, these elements are found to be highly position dependent, for they have no net effect when downstream of the initiation site within the transcribed region and they behave as transcriptional silencers of promoters in cis when moved greater than 2 kilobase pairs upstream of the initiation site. The 60/81-bp elements therefore are position-dependent 5' enhancers. We also found that this rDNA enhancer was polymerase I specific and that it was composed of duplicated, individually functional elements. Finally, we report an in vitro system that reproduces both cis enhancement and trans competition by the 60/81-bp repeats. Sequential-addition studies in this system demonstrated that the rDNA enhancer functions in trans at or before establishment of the stable transcription complex, not subsequently at each round of transcription.


1987 ◽  
Vol 7 (1) ◽  
pp. 314-325
Author(s):  
C A Harrington ◽  
D M Chikaraishi

The transcriptional activity of spacer sequences flanking the rat 45S ribosomal DNA (rDNA) gene were studied. Nascent RNA labeled in in vitro nuclear run-on reactions hybridized with both 5' and 3' spacer regions. The highest level of hybridization was seen with an rDNA fragment containing tandem repeats of a 130-base-pair sequence upstream of the 45S rRNA initiation site. Synthesis of RNA transcripts homologous to this internally repetitious spacer region was insensitive to high levels of alpha-amanitin, suggesting that it is mediated by RNA polymerase I. Analysis of steady-state RNA showed that these transcripts were present at extremely low levels in vivo relative to precursor rRNA transcripts. In contrast, precursor and spacer run-on RNAs were synthesized at similar levels. This suggests that spacer transcripts are highly unstable in vivo; therefore, it may be the process of transcription rather than the presence of spacer transcripts that is functionally important. Transcription in this upstream rDNA region may be involved in regulation of 45S rRNA synthesis in rodents, as has been suggested previously for frog rRNA. In addition, the presence of transcriptional activity in other regions of the spacer suggests that some polymerase I molecules may transcribe through the spacer from one 45S gene to the next on rodent rDNA.


1987 ◽  
Vol 7 (1) ◽  
pp. 314-325 ◽  
Author(s):  
C A Harrington ◽  
D M Chikaraishi

The transcriptional activity of spacer sequences flanking the rat 45S ribosomal DNA (rDNA) gene were studied. Nascent RNA labeled in in vitro nuclear run-on reactions hybridized with both 5' and 3' spacer regions. The highest level of hybridization was seen with an rDNA fragment containing tandem repeats of a 130-base-pair sequence upstream of the 45S rRNA initiation site. Synthesis of RNA transcripts homologous to this internally repetitious spacer region was insensitive to high levels of alpha-amanitin, suggesting that it is mediated by RNA polymerase I. Analysis of steady-state RNA showed that these transcripts were present at extremely low levels in vivo relative to precursor rRNA transcripts. In contrast, precursor and spacer run-on RNAs were synthesized at similar levels. This suggests that spacer transcripts are highly unstable in vivo; therefore, it may be the process of transcription rather than the presence of spacer transcripts that is functionally important. Transcription in this upstream rDNA region may be involved in regulation of 45S rRNA synthesis in rodents, as has been suggested previously for frog rRNA. In addition, the presence of transcriptional activity in other regions of the spacer suggests that some polymerase I molecules may transcribe through the spacer from one 45S gene to the next on rodent rDNA.


1985 ◽  
Vol 5 (3) ◽  
pp. 554-562 ◽  
Author(s):  
K G Miller ◽  
J Tower ◽  
B Sollner-Webb

To determine the size and location of the mouse rDNA promoter, we constructed systematic series of deletion mutants approaching the initiation site from the 5' and 3' directions. These templates were transcribed in vitro under various conditions with S-100 and whole-cell extracts. Surprisingly, the size of the rDNA region that determines the level of transcription differed markedly, depending on the reaction conditions. In both kinds of cell extracts, the apparent 5' border of the promoter was at residue ca. -27 under optimal transcription conditions, but as reaction conditions became less favorable, the 5' border moved progressively out to residues -35, -39, and -45. The complete promoter, however, extends considerably further, for under other nonoptimal conditions, we observed major effects of promoter domains extending in the 5' direction to positions ca. -100 and -140. In contrast, the apparent 3' border of the mouse rDNA promoter was at residue ca. +9 under all conditions examined. We also show that the subcloned rDNA region from -39 to +9 contains sufficient information to initiate accurately and that the region between +2 and +9 can influence the specificity of initiation. These data indicate that, although the polymerase I transcription factors recognize and accurately initiate with only the sequences downstream of residue -40, sequences extending out to residue -140 greatly favor the initiation reaction; presumably, this entire region is involved in rRNA transcription in vivo.


1998 ◽  
Vol 18 (7) ◽  
pp. 3752-3761 ◽  
Author(s):  
Joan S. Steffan ◽  
Daniel A. Keys ◽  
Loan Vu ◽  
Masayasu Nomura

ABSTRACT Previous in vitro studies have shown that initiation of transcription of ribosomal DNA (rDNA) in the yeast Saccharomyces cerevisiae involves an interaction of upstream activation factor (UAF) with the upstream element of the promoter, forming a stable UAF-template complex; together with TATA-binding protein (TBP), UAF then recruits an essential factor, core factor (CF), to the promoter, forming a stable preinitiation complex. TBP interacts with both UAF and CF in vitro. In addition, a subunit of UAF, Rrn9p, interacts with TBP in vitro and in the two-hybrid system, suggesting the possible importance of this interaction for UAF function. Using the yeast two-hybrid system, we have identified three mutations inRRN9 that abolish the interaction of Rrn9p with TBP without affecting its interaction with Rrn10p, another subunit of UAF. Yeast cells containing any one of these individual mutations,L110S, L269P, or L274Q, did not show any growth defects. However, cells containing a combination ofL110S with one of the other two mutations showed a temperature-sensitive phenotype, and this phenotype was suppressed by fusing the mutant genes to SPT15, which encodes TBP. In addition, another mutation (F186S), which disrupts both Rrn9p-TBP and Rrn9p-Rrn10p interactions in the two-hybrid system, abolished UAF function in vivo, and this mutational defect was suppressed by fusion of the mutant gene to SPT15 combined with overexpression of Rrn10p. These experiments demonstrate that the interaction of UAF with TBP, which is presumably achieved by the interaction of Rrn9p with TBP, is indeed important for high-level transcription of rDNA by RNA polymerase I in vivo.


2006 ◽  
Vol 26 (16) ◽  
pp. 5957-5968 ◽  
Author(s):  
Tatiana B. Panova ◽  
Kostya I. Panov ◽  
Jackie Russell ◽  
Joost C. B. M. Zomerdijk

ABSTRACT Mammalian RNA polymerase I (Pol I) complexes contain a number of associated factors, some with undefined regulatory roles in transcription. We demonstrate that casein kinase 2 (CK2) in human cells is associated specifically only with the initiation-competent Pol Iβ isoform and not with Pol Iα. Chromatin immunoprecipitation analysis places CK2 at the ribosomal DNA (rDNA) promoter in vivo. Pol Iβ-associated CK2 can phosphorylate topoisomerase IIα in Pol Iβ, activator upstream binding factor (UBF), and selectivity factor 1 (SL1) subunit TAFI110. A potent and selective CK2 inhibitor, 3,8-dibromo-7-hydroxy-4-methylchromen-2-one, limits in vitro transcription to a single round, suggesting a role for CK2 in reinitiation. Phosphorylation of UBF by CK2 increases SL1-dependent stabilization of UBF at the rDNA promoter, providing a molecular mechanism for the stimulatory effect of CK2 on UBF activation of transcription. These positive effects of CK2 in Pol I transcription contrast to that wrought by CK2 phosphorylation of TAFI110, which prevents SL1 binding to rDNA, thereby abrogating the ability of SL1 to nucleate preinitiation complex (PIC) formation. Thus, CK2 has the potential to regulate Pol I transcription at multiple levels, in PIC formation, activation, and reinitiation of transcription.


1985 ◽  
Vol 5 (3) ◽  
pp. 554-562
Author(s):  
K G Miller ◽  
J Tower ◽  
B Sollner-Webb

To determine the size and location of the mouse rDNA promoter, we constructed systematic series of deletion mutants approaching the initiation site from the 5' and 3' directions. These templates were transcribed in vitro under various conditions with S-100 and whole-cell extracts. Surprisingly, the size of the rDNA region that determines the level of transcription differed markedly, depending on the reaction conditions. In both kinds of cell extracts, the apparent 5' border of the promoter was at residue ca. -27 under optimal transcription conditions, but as reaction conditions became less favorable, the 5' border moved progressively out to residues -35, -39, and -45. The complete promoter, however, extends considerably further, for under other nonoptimal conditions, we observed major effects of promoter domains extending in the 5' direction to positions ca. -100 and -140. In contrast, the apparent 3' border of the mouse rDNA promoter was at residue ca. +9 under all conditions examined. We also show that the subcloned rDNA region from -39 to +9 contains sufficient information to initiate accurately and that the region between +2 and +9 can influence the specificity of initiation. These data indicate that, although the polymerase I transcription factors recognize and accurately initiate with only the sequences downstream of residue -40, sequences extending out to residue -140 greatly favor the initiation reaction; presumably, this entire region is involved in rRNA transcription in vivo.


1988 ◽  
Vol 8 (10) ◽  
pp. 4282-4288 ◽  
Author(s):  
C S Pikaard ◽  
R H Reeder

The intergenic spacer region of the Xenopus laevis ribosomal DNA contains multiple elements which are either 60 or 81 base pairs long. Clusters of these elements have previously been shown to act as position- and distance-independent enhancers on an RNA polymerase I promoter when located in cis. By a combination of deletion and linker scanner mutagenesis we show that the sequences essential for enhancer function are located within a 56-base-pair region that is present in both the 60- and 81-base-pair repeats. Within the 56-base-pair region one linker scanner mutation was found to be relatively neutral, suggesting that each enhancer element may be composed of two smaller domains. Each 56-base-pair region appears to be an independent enhancer with multiple enhancers being additive in effect. We review the current evidence concerning the mechanism of action of these enhancers.


1988 ◽  
Vol 8 (10) ◽  
pp. 4282-4288
Author(s):  
C S Pikaard ◽  
R H Reeder

The intergenic spacer region of the Xenopus laevis ribosomal DNA contains multiple elements which are either 60 or 81 base pairs long. Clusters of these elements have previously been shown to act as position- and distance-independent enhancers on an RNA polymerase I promoter when located in cis. By a combination of deletion and linker scanner mutagenesis we show that the sequences essential for enhancer function are located within a 56-base-pair region that is present in both the 60- and 81-base-pair repeats. Within the 56-base-pair region one linker scanner mutation was found to be relatively neutral, suggesting that each enhancer element may be composed of two smaller domains. Each 56-base-pair region appears to be an independent enhancer with multiple enhancers being additive in effect. We review the current evidence concerning the mechanism of action of these enhancers.


1990 ◽  
Vol 10 (9) ◽  
pp. 4970-4973
Author(s):  
S L Henderson ◽  
B Sollner-Webb

Using mouse ribosomal DNA templates bearing polymerase I terminators to prevent transcriptional interference (S. L. Henderson, K. Ryan, and B. Sollner-Webb, Genes Dev. 3:212-223, 1989) and facilitate promoter analysis in intact cells, we demonstrate that a -140 promoter domain (as well as the core region) is essential for appreciable levels of initiation in vivo. This in vivo polymerase I promoter can also be detected in vitro but only under very stringent conditions.


Sign in / Sign up

Export Citation Format

Share Document