Molecular organization and expression of the genetic locus glued in Drosophila melanogaster

1986 ◽  
Vol 6 (3) ◽  
pp. 833-841
Author(s):  
A Swaroop ◽  
J W Sun ◽  
M L Paco-Larson ◽  
A Garen

The Glued locus of Drosophila melanogaster is genetically defined as the functional unit which is affected by the dominant Glued mutation Gl. Genomic DNA was cloned from the region of the Glued locus, at 70C2 on chromosome 3, by using a P element insertion in the region as a molecular marker. Three genes encoding polyadenylated transcripts were detected within a 30-kilobase span of the cloned DNA. The gene nearest the P element insertion site was identified as a Glued gene on the basis of alterations in its DNA and encoded transcript associated with the Gl mutation and with reversions of Gl which eliminate the dominant effect by inactivation of the mutant allele. Expression of the wild-type Gl+ gene is temporally regulated during development; the amount of the encoded transcript is highest in the embryonic stage, decreasing in the first and second larval instars, and then increasing in the third instar and pupal stages. There is a maternal contribution of the Gl+ transcript to the embryo, which probably accounts for the maternal lethal effect of Glued mutations on early development. In situ hybridizations of Gl+ DNA to RNA in tissue sections showed that the Gl+ transcript is present in virtually all tissues of the embryo, late larva, and pupa. The general distribution of this transcript is consistent with genetic evidence indicating that the Glued locus controls a generally essential cell function (P. J. Harte and D. R. Kankel, Genetics 101:477-501, 1982). Different Glued mutations produce distinct phenotypic effects, including adults with severe visual defects, larvae lacking imaginal discs, and early lethality. These diverse mutant phenotypes are discussed in terms of quantitative changes in the Glued function. Closely adjacent to Gl+ is another gene which is transcribed in a divergent direction and expressed coordinately with Gl+ throughout Drosophila development. It remains to be determined whether this gene is also involved with the Glued function.

1986 ◽  
Vol 6 (3) ◽  
pp. 833-841 ◽  
Author(s):  
A Swaroop ◽  
J W Sun ◽  
M L Paco-Larson ◽  
A Garen

The Glued locus of Drosophila melanogaster is genetically defined as the functional unit which is affected by the dominant Glued mutation Gl. Genomic DNA was cloned from the region of the Glued locus, at 70C2 on chromosome 3, by using a P element insertion in the region as a molecular marker. Three genes encoding polyadenylated transcripts were detected within a 30-kilobase span of the cloned DNA. The gene nearest the P element insertion site was identified as a Glued gene on the basis of alterations in its DNA and encoded transcript associated with the Gl mutation and with reversions of Gl which eliminate the dominant effect by inactivation of the mutant allele. Expression of the wild-type Gl+ gene is temporally regulated during development; the amount of the encoded transcript is highest in the embryonic stage, decreasing in the first and second larval instars, and then increasing in the third instar and pupal stages. There is a maternal contribution of the Gl+ transcript to the embryo, which probably accounts for the maternal lethal effect of Glued mutations on early development. In situ hybridizations of Gl+ DNA to RNA in tissue sections showed that the Gl+ transcript is present in virtually all tissues of the embryo, late larva, and pupa. The general distribution of this transcript is consistent with genetic evidence indicating that the Glued locus controls a generally essential cell function (P. J. Harte and D. R. Kankel, Genetics 101:477-501, 1982). Different Glued mutations produce distinct phenotypic effects, including adults with severe visual defects, larvae lacking imaginal discs, and early lethality. These diverse mutant phenotypes are discussed in terms of quantitative changes in the Glued function. Closely adjacent to Gl+ is another gene which is transcribed in a divergent direction and expressed coordinately with Gl+ throughout Drosophila development. It remains to be determined whether this gene is also involved with the Glued function.


1986 ◽  
Vol 6 (5) ◽  
pp. 1520-1528 ◽  
Author(s):  
D Y Chang ◽  
B Wisely ◽  
S M Huang ◽  
R A Voelker

A hybrid dysgenesis-induced allele [su(s)w20] associated with a P-element insertion was used to clone sequences from the su(s) region of Drosophila melanogaster by means of the transposon-tagging technique. Cloned sequences were used to probe restriction enzyme-digested DNAs from 22 other su(s) mutations. None of three X-ray-induced or six ethyl methanesulfonate-induced su(s) mutations possessed detectable variation. Seven spontaneous, four hybrid dysgenesis-induced, and two DNA transformation-induced mutations were associated with insertions within 2.0 kilobases (kb) of the su(s)w20 P-element insertion site. When the region of DNA that included the mutational insertions was used to probe poly(A)+ RNAs, a 5-kb message was detected in wild-type RNA that was present in greatly reduced amounts in two su(s) mutations. By using strand-specific probes, the direction of transcription of the 5-kb message was determined. The mutational insertions lie in DNA sequences near the 5' end of the 5-kb message. Three of the seven spontaneous su(s) mutations are associated with gypsy insertions, but they are not suppressible by su(Hw).


1986 ◽  
Vol 6 (5) ◽  
pp. 1520-1528
Author(s):  
D Y Chang ◽  
B Wisely ◽  
S M Huang ◽  
R A Voelker

A hybrid dysgenesis-induced allele [su(s)w20] associated with a P-element insertion was used to clone sequences from the su(s) region of Drosophila melanogaster by means of the transposon-tagging technique. Cloned sequences were used to probe restriction enzyme-digested DNAs from 22 other su(s) mutations. None of three X-ray-induced or six ethyl methanesulfonate-induced su(s) mutations possessed detectable variation. Seven spontaneous, four hybrid dysgenesis-induced, and two DNA transformation-induced mutations were associated with insertions within 2.0 kilobases (kb) of the su(s)w20 P-element insertion site. When the region of DNA that included the mutational insertions was used to probe poly(A)+ RNAs, a 5-kb message was detected in wild-type RNA that was present in greatly reduced amounts in two su(s) mutations. By using strand-specific probes, the direction of transcription of the 5-kb message was determined. The mutational insertions lie in DNA sequences near the 5' end of the 5-kb message. Three of the seven spontaneous su(s) mutations are associated with gypsy insertions, but they are not suppressible by su(Hw).


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1665-1672 ◽  
Author(s):  
Ross B Hodgetts ◽  
Sandra L O'Keefe

Abstract We report here the isolation of a new P-element-induced allele of the vestigial locus vg2a33, the molecular characterization of which allows us to propose a unifying explanation of the phenotypes of the large number of vestigial P-element alleles that now exists. The first P-element allele of vestigial to be isolated was vg21, which results in a very weak mutant wing phenotype that is suppressed in the P cytotype. By destabilizing vg2a33 in a dysgenic cross, we isolated the vg2a33 allele, which exhibits a moderate mutant wing phenotype and is not suppressed by the P cytotype. The new allele is characterized by a 46-bp deletion that removes the 3′-proximal copy of the 11-bp internal repeat from the P element of vg21. To understand how this subtle difference between the two alleles leads to a rather pronounced difference in their phenotypes, we mapped both the vg and P-element transcription units present in wild type and mutants. Using both 5′-RACE and S1 protection, we found that P-element transcription is initiated 19 bp farther upstream than previously thought. Using primer extension, the start of vg transcription was determined to lie 435 bp upstream of the longest cDNA recovered to date and upstream of the P-element insertion site. Our discovery that the P element is situated within the first vg exon has prompted a reassessment of the large body of genetic data on a series of alleles derived from vg21. Our current hypothesis to explain the degree of variation in the mutant phenotypes and their response to the P repressor invokes a critical RNA secondary structure in the vg transcript, the formation of which is hindered by a readthrough transcript initiated at the P-element promoter.


Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1063-1076 ◽  
Author(s):  
D Smith ◽  
J Wohlgemuth ◽  
B R Calvi ◽  
I Franklin ◽  
W M Gelbart

Abstract P element enhancer trapping has become an indispensable tool in the analysis of the Drosophila melanogaster genome. However, there is great variation in the mutability of loci by these elements such that some loci are relatively refractory to insertion. We have developed the hobo transposable element for use in enhancer trapping and we describe the results of a hobo enhancer trap screen. In addition, we present evidence that a hobo enhancer trap element has a pattern of insertion into the genome that is different from the distribution of P elements in the available database. Hence, hobo insertion may facilitate access to genes resistant to P element insertion.


1992 ◽  
Vol 60 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Dominique Higuet ◽  
Dominique Anxolabéhére ◽  
Danielle Nouaud

SummaryTransposable P elements in Drosophila melanogaster cause hybrid dysgenesis if their mobility is not repressed. The ability to regulate the dysgenic activity of the P elements depends on several mechanisms, one of which hypothesized that a particular deleted P element (the KP element) results in a non-susceptibility which is biparentally transmitted. In this study totally nonsusceptible lines, and susceptible lines containing exclusively KP elements (IINS2 line and IIS2 line) were isolated from a M' strain. We show that non-susceptibility is correlated with a particular insertion of one KP element located at the cytological site 47D1. The repression ability of the GD sterility is determined by a recessive chromosomal factor, and cannot be due to the KP-element number. Here the repression of the P mobility is associated with reduction of the P transcripts and the inhibition of P promoter activity.


Genetics ◽  
1988 ◽  
Vol 119 (2) ◽  
pp. 377-390
Author(s):  
D Gubb ◽  
S McGill ◽  
M Ashburner

Abstract A screen is described that will select for breakpoints within a restricted chromosomal region in Drosophila. The aberrations recovered can be used to construct chromosomes carrying synthetic duplications and deletions. Such chromosomes have applications in the mapping of complementation groups at both the genetic and molecular level. In particular, breakpoints recovered after P element hybrid dysgenesis tend to be associated with P element insertion sites. Such aberration breakpoints can be genetically mapped, as synthetic deletions, and then used as transposon-tagged sites for the recovery of genomic clones.


2020 ◽  
Author(s):  
Florian Schwarz ◽  
Filip Wierzbicki ◽  
Kirsten-André Senti ◽  
Robert Kofler

AbstractIt was long thought that solely three different transposable elements - the I-element, the P-element and hobo - invaded natural D. melanogaster populations within the last century. By sequencing the ‘living fossils’ of Drosophila research, i.e. D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbour degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, possibly predating the split of D. melanogaster and D. simulans. In contrast to the I-element, P-element and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs and phenotypic effects, we provide a comprehensive study of a natural TE invasion.


Genetics ◽  
1993 ◽  
Vol 133 (2) ◽  
pp. 253-263
Author(s):  
G L Sass ◽  
J D Mohler ◽  
R C Walsh ◽  
L J Kalfayan ◽  
L L Searles

Abstract Mutations at the ovarian tumor (otu) gene of Drosophila melanogaster cause female sterility and generate a range of ovarian phenotypes. Quiescent (QUI) mutants exhibit reduced germ cell proliferation; in oncogenic (ONC) mutants germ cells undergo uncontrolled proliferation generating excessive numbers of undifferentiated cells; the egg chambers of differentiated (DIF) mutants differentiate to variable degrees but fail to complete oogenesis. We have examined mutations caused by insertion and deletion of P elements at the otu gene. The P element insertion sites are upstream of the major otu transcription start sites. In deletion derivatives, the P element, regulatory regions and/or protein coding sequences have been removed. In both insertion and deletion mutants, the level of otu expression correlates directly with the severity of the phenotype: the absence of otu function produces the most severe QUI phenotype while the ONC mutants express lower levels of otu than those which are DIF. The results of this study demonstrate that the diverse mutant phenotypes of otu are the consequence of different levels of otu function.


1988 ◽  
Vol 52 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Walter F. Eanes ◽  
Cedric Wesley ◽  
Jody Hey ◽  
David Houle ◽  
James W. Ajioka

SummaryIn this study we estimate the frequency at which P-element insertion events, as identified by in situ hybridization, generate lethal and mild viability mutations. The frequency of lethal mutations generated per insertion event was 0·004. Viability dropped an average of 1% per insertion event. Our results indicate that it is deletions and rearrangements resulting from the mobilization of P elements already in place and not the insertions per se that cause the drastic effects on viability and fitness observed in most studies of P–M dysgenesis-derived mutations. Elements of five other families (I, copia, 412, B104, and gypsy) were not mobilized in these crosses. Finally, we contrast the density of P elements on the X chromosome with the density on the four autosomal arms in a collection of thirty genomes from an African population. The relative number of P elements on the X chromosome is too high to be explained by either a hemizygous selection or a neutrality model. The possible reasons for the failure to detect selection are discussed.


Sign in / Sign up

Export Citation Format

Share Document