scholarly journals The Mutant Phenotype Associated With P-Element Alleles of the vestigial Locus in Drosophila melanogaster May Be Caused by a Readthrough Transcript Initiated at the P-Element Promoter

Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1665-1672 ◽  
Author(s):  
Ross B Hodgetts ◽  
Sandra L O'Keefe

Abstract We report here the isolation of a new P-element-induced allele of the vestigial locus vg2a33, the molecular characterization of which allows us to propose a unifying explanation of the phenotypes of the large number of vestigial P-element alleles that now exists. The first P-element allele of vestigial to be isolated was vg21, which results in a very weak mutant wing phenotype that is suppressed in the P cytotype. By destabilizing vg2a33 in a dysgenic cross, we isolated the vg2a33 allele, which exhibits a moderate mutant wing phenotype and is not suppressed by the P cytotype. The new allele is characterized by a 46-bp deletion that removes the 3′-proximal copy of the 11-bp internal repeat from the P element of vg21. To understand how this subtle difference between the two alleles leads to a rather pronounced difference in their phenotypes, we mapped both the vg and P-element transcription units present in wild type and mutants. Using both 5′-RACE and S1 protection, we found that P-element transcription is initiated 19 bp farther upstream than previously thought. Using primer extension, the start of vg transcription was determined to lie 435 bp upstream of the longest cDNA recovered to date and upstream of the P-element insertion site. Our discovery that the P element is situated within the first vg exon has prompted a reassessment of the large body of genetic data on a series of alleles derived from vg21. Our current hypothesis to explain the degree of variation in the mutant phenotypes and their response to the P repressor invokes a critical RNA secondary structure in the vg transcript, the formation of which is hindered by a readthrough transcript initiated at the P-element promoter.


1986 ◽  
Vol 6 (3) ◽  
pp. 833-841
Author(s):  
A Swaroop ◽  
J W Sun ◽  
M L Paco-Larson ◽  
A Garen

The Glued locus of Drosophila melanogaster is genetically defined as the functional unit which is affected by the dominant Glued mutation Gl. Genomic DNA was cloned from the region of the Glued locus, at 70C2 on chromosome 3, by using a P element insertion in the region as a molecular marker. Three genes encoding polyadenylated transcripts were detected within a 30-kilobase span of the cloned DNA. The gene nearest the P element insertion site was identified as a Glued gene on the basis of alterations in its DNA and encoded transcript associated with the Gl mutation and with reversions of Gl which eliminate the dominant effect by inactivation of the mutant allele. Expression of the wild-type Gl+ gene is temporally regulated during development; the amount of the encoded transcript is highest in the embryonic stage, decreasing in the first and second larval instars, and then increasing in the third instar and pupal stages. There is a maternal contribution of the Gl+ transcript to the embryo, which probably accounts for the maternal lethal effect of Glued mutations on early development. In situ hybridizations of Gl+ DNA to RNA in tissue sections showed that the Gl+ transcript is present in virtually all tissues of the embryo, late larva, and pupa. The general distribution of this transcript is consistent with genetic evidence indicating that the Glued locus controls a generally essential cell function (P. J. Harte and D. R. Kankel, Genetics 101:477-501, 1982). Different Glued mutations produce distinct phenotypic effects, including adults with severe visual defects, larvae lacking imaginal discs, and early lethality. These diverse mutant phenotypes are discussed in terms of quantitative changes in the Glued function. Closely adjacent to Gl+ is another gene which is transcribed in a divergent direction and expressed coordinately with Gl+ throughout Drosophila development. It remains to be determined whether this gene is also involved with the Glued function.



2015 ◽  
Vol 84 (3) ◽  
pp. 701-710 ◽  
Author(s):  
Madeleine G. Moule ◽  
Natasha Spink ◽  
Sam Willcocks ◽  
Jiali Lim ◽  
José Afonso Guerra-Assunção ◽  
...  

Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survivalin vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuationin vivowere identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarkedbpsl2248,tex,rpiR,bpsl1728, andbpss1528deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was testedin vitroandin vivoto confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important toin vivovirulence with roles in different stages ofB. pseudomalleipathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and thetexmutant was capable of providing protective immunity against challenge with wild-typeB. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates.



1994 ◽  
Vol 40 (2) ◽  
pp. 140-144 ◽  
Author(s):  
Sandra M. Ruzal ◽  
Carmen Sanchez-Rivas

Bacillus subtilis cultures submitted to an osmotic upshock (1.5 M NaCl) lysed unless stationary phase had been reached. Several physiological variations were observed, such as delayed growth (adaptation), a filamentous bacterial appearance, RecA-dependent osmoresistance (SOS), and cross-induction by a previous stress (heat shock). Osmoresistance and sporulation seem to share pathways of regulation such as inhibition in the presence of glucose and glutamine and derepression in a catabolite-resistant mutant such as degUh. However, spores were not obtained on hypertonic media. Mutants of later sporulation stages (spoII, spoIII) presented a response similar to that of the wild-type parent, indicating that both processes probably shared early controls. Null mutations in any of the known key modulators of sporulation (spoOA or degU) resulted in similar levels of osmosensitivity. Sensor mutations in kinA and degS also led to strains with altered responses, the kinA mutant being even more osmosensitive than the degS mutant. Several spoOA mutant phenotypes are due to this gene's control of abrB, a regulator of stationary-phase events, and an abrB mutation relieved the osmosensitivity of the spoOA-containing mutant but had no effect on a wild-type strain.Key words: Bacillus subtilis, osmotic stress, sporulation.



1986 ◽  
Vol 6 (5) ◽  
pp. 1520-1528 ◽  
Author(s):  
D Y Chang ◽  
B Wisely ◽  
S M Huang ◽  
R A Voelker

A hybrid dysgenesis-induced allele [su(s)w20] associated with a P-element insertion was used to clone sequences from the su(s) region of Drosophila melanogaster by means of the transposon-tagging technique. Cloned sequences were used to probe restriction enzyme-digested DNAs from 22 other su(s) mutations. None of three X-ray-induced or six ethyl methanesulfonate-induced su(s) mutations possessed detectable variation. Seven spontaneous, four hybrid dysgenesis-induced, and two DNA transformation-induced mutations were associated with insertions within 2.0 kilobases (kb) of the su(s)w20 P-element insertion site. When the region of DNA that included the mutational insertions was used to probe poly(A)+ RNAs, a 5-kb message was detected in wild-type RNA that was present in greatly reduced amounts in two su(s) mutations. By using strand-specific probes, the direction of transcription of the 5-kb message was determined. The mutational insertions lie in DNA sequences near the 5' end of the 5-kb message. Three of the seven spontaneous su(s) mutations are associated with gypsy insertions, but they are not suppressible by su(Hw).



2008 ◽  
Vol 21 (4) ◽  
pp. 469-479 ◽  
Author(s):  
Hui-Ling Liao ◽  
Kuang-Ren Chung

Elsinochrome pigments produced by many phytopathogenic Elsinoë spp. are nonhost-selective toxins which react with oxygen molecules after light activation to produce highly toxic reactive oxygen species. The structures and chemical properties of four derivatives are well known. However, the biological roles of elsinochromes in fungal pathogenesis are poorly understood. Many isolates of Elsinoë fawcettii causing citrus scab are able to produce elsinochromes under axenic conditions. In this article, we report the cloning, expression, and functional characterization of the polyketide synthase-encoding gene, EfPKS1, which we show is required for the production of elsinochromes and fungal pathogenesis. Targeted disruption of EfPKS1 in E.fawcettii completely abrogated elsinochrome production, drastically reduced conidiation, and significantly decreased lesion formation on rough lemon leaves. All mutant phenotypes were restored to the wild type in fungal strains expressing a functional copy of EfPKS1. Accumulation of the EfPKS1 transcript and elsinochromes by a wild-type strain appears to be coordinately regulated by light, nutrients, and pH. The results indicate that the product of EfPKS1 is involved in the biosynthesis of elsinochromes via a fungal polyketide pathway, and that elsinochromes play an important role in fungal pathogenesis.



1986 ◽  
Vol 6 (3) ◽  
pp. 833-841 ◽  
Author(s):  
A Swaroop ◽  
J W Sun ◽  
M L Paco-Larson ◽  
A Garen

The Glued locus of Drosophila melanogaster is genetically defined as the functional unit which is affected by the dominant Glued mutation Gl. Genomic DNA was cloned from the region of the Glued locus, at 70C2 on chromosome 3, by using a P element insertion in the region as a molecular marker. Three genes encoding polyadenylated transcripts were detected within a 30-kilobase span of the cloned DNA. The gene nearest the P element insertion site was identified as a Glued gene on the basis of alterations in its DNA and encoded transcript associated with the Gl mutation and with reversions of Gl which eliminate the dominant effect by inactivation of the mutant allele. Expression of the wild-type Gl+ gene is temporally regulated during development; the amount of the encoded transcript is highest in the embryonic stage, decreasing in the first and second larval instars, and then increasing in the third instar and pupal stages. There is a maternal contribution of the Gl+ transcript to the embryo, which probably accounts for the maternal lethal effect of Glued mutations on early development. In situ hybridizations of Gl+ DNA to RNA in tissue sections showed that the Gl+ transcript is present in virtually all tissues of the embryo, late larva, and pupa. The general distribution of this transcript is consistent with genetic evidence indicating that the Glued locus controls a generally essential cell function (P. J. Harte and D. R. Kankel, Genetics 101:477-501, 1982). Different Glued mutations produce distinct phenotypic effects, including adults with severe visual defects, larvae lacking imaginal discs, and early lethality. These diverse mutant phenotypes are discussed in terms of quantitative changes in the Glued function. Closely adjacent to Gl+ is another gene which is transcribed in a divergent direction and expressed coordinately with Gl+ throughout Drosophila development. It remains to be determined whether this gene is also involved with the Glued function.



Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1061-1069
Author(s):  
Jocelyn A Hammond ◽  
Robin R Preston

Abstract Discerning the mechanisms responsible for membrane excitation and ionic control in Paramecium has been facilitated by the availability of genetic mutants that are defective in these pathways. Such mutants typically are selected on the basis of behavioral anomalies or resistance to ions. There have been few attempts to isolate ion-sensitive strains, despite the insights that might be gained from studies of their phenotypes. Here, we report isolation of “magbane,” an ion-sensitive strain that is susceptible to Mg2+. Whereas the wild type tolerated the addition of ≥20 mm MgCl2 to the culture medium before growth was slowed and ultimately suppressed (at >40 mm), mgx mutation slowed growth at 10 mm. Genetic analysis indicated that the phenotype resulted from a recessive single-gene mutation that had not been described previously. We additionally noted that a mutant that was well described previously (restless) is also highly sensitive to Mg2+. This mutant is characterized by an inability to control membrane potential when extracellular K+ concentrations are lowered, due to inappropriate regulation of a Ca2+-dependent K+ current. However, comparing the mgx and rst mutant phenotypes suggested that two independent mechanisms might be responsible for their Mg2+ lethality. The possibility that mgx mutation may adversely affect a transporter that is required for maintaining low intracellular Mg2+ is considered.



Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 725-745 ◽  
Author(s):  
Stephen F Goodwin ◽  
Barbara J Taylor ◽  
Adriana Villella ◽  
Margit Foss ◽  
Lisa C Ryner ◽  
...  

Abstract The fruitless (fru) gene functions in Drosophila males to establish the potential for male sexual behaviors. fru encodes a complex set of sex-specific and sex-nonspecific mRNAs through the use of multiple promoters and alternative pre-mRNA processing. The male-specific transcripts produced from the distal (P1) fru promoter are believed to be responsible for its role in specifying sexual behavior and are only expressed in a small fraction of central nervous system (CNS) cells. To understand the molecular etiology of fruitless mutant phenotypes, we compared wild-type and mutant transcription patterns. These experiments revealed that the fru2, fru3, fru4, and frusat mutations, which are due to P-element inserts, alter the pattern of sex-specific and sex-nonspecific fru RNAs. These changes arise in part from the P-element insertions containing splice acceptor sites that create alternative processing pathways. In situ hybridization revealed no alterations in the locations of cells expressing the P1-fru-promoter-derived transcripts in fru2, fru3, fru4, and frusat pharate adults. For the fru1 mutant (which is due to an inversion breakpoint near the P1 promoter), Northern analyses revealed no significant changes in fru transcript patterns. However, in situ hybridization revealed anomalies in the level and distribution of P1-derived transcripts: in fru1 males, fewer P1-expressing neurons are found in regions of the dorsal lateral protocerebrum and abdominal ganglion compared to wild-type males. In other regions of the CNS, expression of these transcripts appears normal in fru1 males. The loss of fruitless expression in these regions likely accounts for the striking courtship abnormalities exhibited by fru1 males. Thus, we suggest that the mutant phenotypes in fru2, fru3, fru4, and frusat animals are due to a failure to appropriately splice P1 transcripts, whereas the mutant phenotype of fru1 animals is due to the reduction or absence of P1 transcripts within specific regions of the CNS.



Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 701-713 ◽  
Author(s):  
Valérie Robert ◽  
Nicole Prud’homme ◽  
Alexander Kim ◽  
Alain Bucheton ◽  
Alain Pélisson

Abstract The flamenco gene, located at 20A1-3 in the β-heterochromatin of the Drosophila X chromosome, is a major regulator of the gypsy/mdg4 endogenous retrovirus. As a first step to characterize this gene, ∼100 kb of genomic DNA flanking a P-element-induced mutation of flamenco was isolated. This DNA is located in a sequencing gap of the Celera Genomics project, i.e., one of those parts of the genome in which the “shotgun” sequence could not be assembled, probably because it contains long stretches of repetitive DNA, especially on the proximal side of the P insertion point. Deficiency mapping indicated that sequences required for the normal flamenco function are located >130 kb proximal to the insertion site. The distal part of the cloned DNA does, nevertheless, contain several unique sequences, including at least four different transcription units. Dip1, the closest one to the P-element insertion point, might be a good candidate for a gypsy regulator, since it putatively encodes a nuclear protein containing two double-stranded RNA-binding domains. However, transgenes containing dip1 genomic DNA were not able to rescue flamenco mutant flies. The possible nature of the missing flamenco sequences is discussed.



Genetics ◽  
1993 ◽  
Vol 135 (2) ◽  
pp. 489-505 ◽  
Author(s):  
D H Castrillon ◽  
P Gönczy ◽  
S Alexander ◽  
R Rawson ◽  
C G Eberhart ◽  
...  

Abstract We describe 83 recessive autosomal male-sterile mutations, generated by single P element mutagenesis in Drosophila melanogaster. Each mutation has been localized to a lettered subdivision of the polytene map. Reversion analyses, as well as complementation tests using available chromosomal deficiencies, indicate that the insertions are responsible for the mutant phenotypes. These mutations represent 63 complementation groups, 58 of which are required for spermatogenesis. Phenotypes of the spermatogenesis mutants were analyzed by light microscopy. Mutations in 12 loci affect germline proliferation, spermatocyte growth, or meiosis. Mutations in 46 other loci disrupt differentiation and maturation of spermatids into motile sperm. This collection of male-sterile mutants provides the basis for a molecular genetic analysis of spermatogenesis.



Sign in / Sign up

Export Citation Format

Share Document