Transfer and amplification of a mutant beta-tubulin gene results in colcemid dependence: use of the transformant to demonstrate regulation of beta-tubulin subunit levels by protein degradation

1986 ◽  
Vol 6 (5) ◽  
pp. 1422-1429
Author(s):  
C Whitfield ◽  
I Abraham ◽  
D Ascherman ◽  
M M Gottesman

Total genomic DNA from a temperature-sensitive, colcemid-resistant Chinese hamster ovary (CHO) cell mutant expressing an electrophoretic variant beta-tubulin was used to transform wild-type CHO cells to colcemid-resistant cells at 37 degrees C. Southern blot analysis of the transformant demonstrated the three- to fivefold amplification of one of many beta-tubulin sequences compared with that of the wild type or mutant, thereby identifying a functional tubulin gene in CHO cells. This amplification of one tubulin-coding sequence resulted in a threefold increase in two beta-tubulin mRNA species, suggesting that both species may be encoded by a single gene. Pulse-chase experiments showed that in the transformant, total beta-tubulin was synthesized and degraded faster than in the revertant or wild-type cells, so that the steady-state levels of beta-tubulin and alpha-tubulin were unchanged in the transformant compared with those of wild-type, mutant, or revertant cells. Increased ratios of mutant to wild-type beta-tubulin made the transformant dependent on microtubule-depolymerizing drugs for growth at 37 but not 34 degrees C and supersensitive to the microtubule-stabilizing drug taxol at 34 degrees C.

1986 ◽  
Vol 6 (5) ◽  
pp. 1422-1429 ◽  
Author(s):  
C Whitfield ◽  
I Abraham ◽  
D Ascherman ◽  
M M Gottesman

Total genomic DNA from a temperature-sensitive, colcemid-resistant Chinese hamster ovary (CHO) cell mutant expressing an electrophoretic variant beta-tubulin was used to transform wild-type CHO cells to colcemid-resistant cells at 37 degrees C. Southern blot analysis of the transformant demonstrated the three- to fivefold amplification of one of many beta-tubulin sequences compared with that of the wild type or mutant, thereby identifying a functional tubulin gene in CHO cells. This amplification of one tubulin-coding sequence resulted in a threefold increase in two beta-tubulin mRNA species, suggesting that both species may be encoded by a single gene. Pulse-chase experiments showed that in the transformant, total beta-tubulin was synthesized and degraded faster than in the revertant or wild-type cells, so that the steady-state levels of beta-tubulin and alpha-tubulin were unchanged in the transformant compared with those of wild-type, mutant, or revertant cells. Increased ratios of mutant to wild-type beta-tubulin made the transformant dependent on microtubule-depolymerizing drugs for growth at 37 but not 34 degrees C and supersensitive to the microtubule-stabilizing drug taxol at 34 degrees C.


1994 ◽  
Vol 14 (6) ◽  
pp. 4076-4086 ◽  
Author(s):  
C J Bachurski ◽  
N G Theodorakis ◽  
R M Coulson ◽  
D W Cleveland

The steady-state level of alpha- and beta-tubulin synthesis is autoregulated by a posttranscriptional mechanism that selectively alters alpha- and beta-tubulin mRNA levels in response to changes in the unassembled tubulin subunit concentration. For beta-tubulin mRNAs, previous efforts have shown that this is the result of a selective mRNA degradation mechanism which involves cotranslational recognition of the nascent amino-terminal beta-tubulin tetrapeptide as it emerges from the ribosome. Site-directed mutagenesis is now used to determine that the minimal sequence requirement for conferring the full range of beta-tubulin autoregulation is the amino-terminal tetrapeptide MR(E/D)I. Although tubulin-dependent changes in alpha-tubulin mRNA levels are shown to result from changes in cytoplasmic mRNA stability, transfection of wild-type and mutated alpha-tubulin genes reveals that alpha- and beta-tubulin mRNA degradation is not mediated through a common pathway. Not only does the amino-terminal alpha-tubulin tetrapeptide MREC fail to confer regulated mRNA degradation, neither wild-type alpha-tubulin transgenes nor an alpha-tubulin gene mutated to encode an amino-terminal MREI yields mRNAs that are autoregulated. Further, although slowing ribosome transit accelerates the autoregulated degradation of endogenous alpha- and beta-tubulin mRNAs, degradation of alpha-tubulin transgene mRNAs is not enhanced, and in one case, the mRNA is actually stabilized. We conclude that, despite similarities, alpha- and beta-tubulin mRNA destabilization pathways utilize divergent determinants to link RNA instability to tubulin subunit concentrations.


1987 ◽  
Vol 7 (8) ◽  
pp. 2700-2707
Author(s):  
B Boggs ◽  
F Cabral

Eight strains of Chinese hamster ovary (CHO) cells having an assembly-defective beta-tubulin were found among revertants of strain Cmd 4, a mutant with a conditional lethal mutation in a beta-tubulin gene (F. Cabral, M. E. Sobel, and M. M. Gottesman, Cell 20:29-36, 1980). The altered beta-tubulins in these strains have electrophoretically silent alterations or, in some cases, an increase or a decrease in apparent molecular weight based on their migration in two-dimensional gels. The identity of these variant proteins as beta-tubulin was confirmed by peptide mapping, which also revealed the loss of distinct methionine-containing peptides in the assembly-defective beta-tubulins of lower apparent molecular weight. The altered mobility of these beta-tubulin polypeptides was not the result of a posttranslational modification, since the altered species could be labeled in very short incubations with [35S]methionine and were found among in vitro-translated polypeptides by using purified mRNA. In at least one strain, an altered DNA restriction fragment could be demonstrated, suggesting that an alteration occurred in one of the structural genes for beta-tubulin. Assembly-defective beta-tubulin was unstable and turned over with a half-life of only 1 to 2 h in exponentially growing cells. This rapid degradation of a tubulin gene product resulted in approximately 30% lower steady-state levels of both alpha- and beta-tubulin yet did not affect the growth rate of the cells or the distribution of the microtubules as judged by immunofluorescence microscopy. These results argue that CHO cells possess a beta-tubulin gene product that is not essential for survival.


1989 ◽  
Vol 108 (4) ◽  
pp. 1291-1300 ◽  
Author(s):  
S Schmid ◽  
R Fuchs ◽  
M Kielian ◽  
A Helenius ◽  
I Mellman

During endocytosis in Chinese hamster ovary (CHO) cells, Semliki Forest virus (SFV) passes through two distinct subpopulations of endosomes before reaching lysosomes. One subpopulation, defined by cell fractionation using free flow electrophoresis as "early endosomes," constitutes the major site of membrane and receptor recycling; while "late endosomes," an electrophoretically distinct endosome subpopulation, are involved in the delivery of endosomal content to lysosomes. In this paper, the pH-sensitive conformational changes of the SFV E1 spike glycoprotein were used to study the acidification of these defined endosome subpopulations in intact wild-type and acidification-defective CHO cells. Different virus strains were used to measure the kinetics at which internalized SFV was delivered to endosomes of pH less than or equal to 6.2 (the pH at which wild-type E1 becomes resistant to trypsin digestion) vs. endosomes of pH less than or equal to 5.3 (the threshold pH for E1 of the SFV mutant fus-1). By correlating the kinetics of acquisition of E1 trypsin resistance with the transfer of SFV among distinct endosome subpopulations defined by cell fractionation, we found that after a brief residence in vesicles of relatively neutral pH, internalized virus encountered pH less than or equal to 6.2 in early endosomes with a t1/2 of 5 min. Although a fraction of the virus reached a pH of less than or equal to 5.3 in early endosomes, most fus-1 SFV did not exhibit the acid-induced conformational change until arrival in late endosomes (t1/2 = 8-10 min). Thus, acidification of both endosome subpopulations was heterogeneous. However, passage of SFV through a less acidic early endosome subpopulation always preceded arrival in the more acidic late endosome subpopulation. In mutant CHO cells with temperature-sensitive defects in endosome acidification in vitro, acidification of both early and late endosomes was found to be impaired at the restrictive temperature (41 degrees C). The acidification defect was also found to be partially penetrant at the permissive temperature, resulting in the inability of any early endosomes in these cells to attain pH less than or equal to 5.3. In vitro studies of endosomes isolated from mutant cells suggested that the acidification defect is most likely in the proton pump itself. In one mutant, this defect resulted in increased sensitivity of the electrogenic H+ pump to fluctuations in the endosomal membrane potential.


1986 ◽  
Vol 102 (4) ◽  
pp. 1522-1531 ◽  
Author(s):  
M J Schibler ◽  
F Cabral

Chinese hamster ovary cell mutants resistant to the microtubule stabilizing drug taxol were isolated in a single step. Of these 139 drug-resistant mutants, 59 exhibit an absolute requirement for taxol for normal growth and division, 13 have a partial requirement, and 69 grow normally without the drug. Two-dimensional gel analysis of whole cell proteins reveal "extra" spots representing altered tubulins in 13 of the mutants. Six of these have an altered alpha-tubulin and seven have an altered beta-tubulin. Cells with an absolute dependence on taxol become large and multinucleated when deprived of the drug. In contrast, partially dependent cells exhibit some multinucleation, but most cells appear normal. In one mutant that has an absolute dependence on taxol, the cells appear to die more quickly and their nuclei do not increase in size or number. As previously found for another taxol-dependent mutant (Cabral, F., 1983, J. Cell. Biol., 97:22-29), the taxol dependence of the mutants described in this paper behaves recessively in somatic cell hybrids, and the cells are more susceptible to being killed by colcemid than are the wild-type parental cells. When compared with wild-type cells, taxol-dependent mutants have normal arrays of cytoplasmic microtubules but form much smaller mitotic spindles in the presence of taxol. When deprived of the drug, however, these mutants cannot complete assembly of the mitotic spindle apparatus, as judged by tubulin immunofluorescence. Thus, the defects leading to taxol dependence in these mutants with defined alterations in alpha- and beta-tubulin appear to result from the cell's inability to form a functional mitotic spindle. Reversion analysis indicates that the properties of at least one alpha-tubulin mutant are conferred by the altered tubulin seen on two-dimensional gels.


1994 ◽  
Vol 14 (6) ◽  
pp. 4076-4086
Author(s):  
C J Bachurski ◽  
N G Theodorakis ◽  
R M Coulson ◽  
D W Cleveland

The steady-state level of alpha- and beta-tubulin synthesis is autoregulated by a posttranscriptional mechanism that selectively alters alpha- and beta-tubulin mRNA levels in response to changes in the unassembled tubulin subunit concentration. For beta-tubulin mRNAs, previous efforts have shown that this is the result of a selective mRNA degradation mechanism which involves cotranslational recognition of the nascent amino-terminal beta-tubulin tetrapeptide as it emerges from the ribosome. Site-directed mutagenesis is now used to determine that the minimal sequence requirement for conferring the full range of beta-tubulin autoregulation is the amino-terminal tetrapeptide MR(E/D)I. Although tubulin-dependent changes in alpha-tubulin mRNA levels are shown to result from changes in cytoplasmic mRNA stability, transfection of wild-type and mutated alpha-tubulin genes reveals that alpha- and beta-tubulin mRNA degradation is not mediated through a common pathway. Not only does the amino-terminal alpha-tubulin tetrapeptide MREC fail to confer regulated mRNA degradation, neither wild-type alpha-tubulin transgenes nor an alpha-tubulin gene mutated to encode an amino-terminal MREI yields mRNAs that are autoregulated. Further, although slowing ribosome transit accelerates the autoregulated degradation of endogenous alpha- and beta-tubulin mRNAs, degradation of alpha-tubulin transgene mRNAs is not enhanced, and in one case, the mRNA is actually stabilized. We conclude that, despite similarities, alpha- and beta-tubulin mRNA destabilization pathways utilize divergent determinants to link RNA instability to tubulin subunit concentrations.


1987 ◽  
Vol 7 (8) ◽  
pp. 2700-2707 ◽  
Author(s):  
B Boggs ◽  
F Cabral

Eight strains of Chinese hamster ovary (CHO) cells having an assembly-defective beta-tubulin were found among revertants of strain Cmd 4, a mutant with a conditional lethal mutation in a beta-tubulin gene (F. Cabral, M. E. Sobel, and M. M. Gottesman, Cell 20:29-36, 1980). The altered beta-tubulins in these strains have electrophoretically silent alterations or, in some cases, an increase or a decrease in apparent molecular weight based on their migration in two-dimensional gels. The identity of these variant proteins as beta-tubulin was confirmed by peptide mapping, which also revealed the loss of distinct methionine-containing peptides in the assembly-defective beta-tubulins of lower apparent molecular weight. The altered mobility of these beta-tubulin polypeptides was not the result of a posttranslational modification, since the altered species could be labeled in very short incubations with [35S]methionine and were found among in vitro-translated polypeptides by using purified mRNA. In at least one strain, an altered DNA restriction fragment could be demonstrated, suggesting that an alteration occurred in one of the structural genes for beta-tubulin. Assembly-defective beta-tubulin was unstable and turned over with a half-life of only 1 to 2 h in exponentially growing cells. This rapid degradation of a tubulin gene product resulted in approximately 30% lower steady-state levels of both alpha- and beta-tubulin yet did not affect the growth rate of the cells or the distribution of the microtubules as judged by immunofluorescence microscopy. These results argue that CHO cells possess a beta-tubulin gene product that is not essential for survival.


1993 ◽  
Vol 106 (1) ◽  
pp. 209-218 ◽  
Author(s):  
S.W. James ◽  
C.D. Silflow ◽  
P. Stroom ◽  
P.A. Lefebvre

A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii was isolated by using the amiprophos-methyl-resistant mutation apm1-18 as a background to select new mutants that showed increased resistance to the drug. The upA12 mutation caused twofold resistance to amiprophos-methyl and oryzalin, and twofold hypersensitivity to the microtubule-stabilizing drug taxol, suggesting that the mutation enhanced microtubule stability. The resistance mutation was semi-dominant and mapped to the same interval on linkage group III as the alpha 1-tubulin gene. Two-dimensional gel immunoblots of proteins in the mutant cells revealed two electrophoretically altered alpha-tubulin isoforms, one of which was acetylated and incorporated into microtubules in the axoneme. The mutant isoforms co-segregated with the drug-resistance phenotypes when mutant upA12 was backcrossed to wild-type cells. Two-dimensional gel analysis of in vitro translation products showed that the non-acetylated variant alpha-tubulin was a primary gene product. DNA sequence analysis of the alpha 1-tubulin genes from mutant and wild-type cells revealed a single missense mutation, which predicted a change in codon 24 from tyrosine in wild type to histidine in mutant upA12. This alteration in the predicted amino acid sequence corroborated the approximately +1 basic charge shift observed for the variant alpha-tubulins. The mutant allele of the alpha 1-tubulin gene was designated tua1-1.


1989 ◽  
Vol 9 (5) ◽  
pp. 2042-2049
Author(s):  
G S Harris ◽  
E J Keath ◽  
J Medoff

Recent investigations have confirmed the presence of one alpha-tubulin gene (TUB1) and one beta-tubulin gene (TUB2) in the dimorphic fungus Histoplasma capsulatum. In the present study, Northern blot (RNA blot) analyses revealed multiple alpha-tubulin transcripts and a single beta-tubulin transcript in the yeast and mycelial phases of the high-virulence 217B strain and low-virulence Downs strain. S1 nuclease protection assays demonstrated one initiation start site and two major stop sites for the TUB1 transcripts, suggesting that variations in 3' processing generate the alpha-tubulin messages of 2.5 and 2.0 kilobases. Dot blot hybridization experiments indicated that tubulin gene expression is developmentally regulated during the dimorphic phase transitions. alpha- and beta-tubulin mRNAs increased six- to eightfold during the yeast-to-mycelium conversion and decreased two- to threefold during the reverse transition. These changes in tubulin mRNA content coincided with major morphological events associated with H. capsulatum development. Western blots (immunoblots) of H. capsulatum yeast-specific proteins resolved by two-dimensional gel electrophoresis demonstrated a single alpha- and a single beta-tubulin isoform. Multiple tubulin polypeptides expressed in mycelia are probably products of posttranslational modifications.


1988 ◽  
Vol 8 (11) ◽  
pp. 4685-4691
Author(s):  
J K Mayo ◽  
K E Sampson ◽  
L D Adams ◽  
E R Crumm ◽  
S L Kelly ◽  
...  

We transfected Chinese hamster ovary (CHO) cells with a cloned v-mos gene (pHT25). The mos family of oncogenes has previously been shown to have serine-threonine kinase activity. This kinase activity may be required for oncogenic transformation, although its exact biological role is unknown. We found that the transfected cells had an altered morphology, a slower doubling time, and an apparent increase in the amount of a 25-kilodalton (kDa) phosphoprotein that appeared to be of low abundance. Transfection of CHO cells with a cloned temperature-sensitive mos gene (ts159) led to isolation of a cell line that showed the presence of the 25-kDa phosphoprotein at the permissive but not at the nonpermissive temperature, suggesting a direct relationship between mos activity and the presence of this phosphoprotein. The characteristics of altered morphology and depressed growth rate were reminiscent of changes seen after the activation of the cyclic AMP-dependent protein kinase (PKA) in CHO cells. However, PKA activation did not stimulate phosphorylation of this 25-kDa protein, nor was there a change in total PKA activity in these cells. We suggest that the increased presence of the 25-kDa phosphoprotein is a consequence of the v-mos transfection and that it may be involved in the change of morphology and growth rate seen in the CHO cells. Phosphorylation of this protein may be a useful marker of mos and have some functional importance in the transformation of cells by the v-mos oncogene.


Sign in / Sign up

Export Citation Format

Share Document