scholarly journals ADR1-mediated regulation of ADH2 requires an inverted repeat sequence.

1986 ◽  
Vol 6 (6) ◽  
pp. 1894-1902 ◽  
Author(s):  
J Shuster ◽  
J Yu ◽  
D Cox ◽  
R V Chan ◽  
M Smith ◽  
...  

DNA sequence analysis of wild-type and mutant ADH2 loci suggested that two unusual features 5' of the promoter, a 22-base-pair perfect dyad sequence and a (dA)20 tract, were important for regulation of this gene (D. W. Russell, M. Smith, D. Cox, V. M. Williamson, and E. T. Young, Nature [London] 304:652-654, 1983). Oligonucleotide-directed mutagenesis was used to construct ADH2 genes lacking the 22-base-pair dyad or the (dA)20 tract (V.-L. Chan and M. Smith, Nucleic Acids Res. 12:2407-2419, 1984). These mutant genes and other ADH2 deletions constructed by BAL 31 endonuclease digestion were studied after replacing the wild-type chromosomal locus with the altered alleles by the technique of gene transplacement (T. L. Orr-Weaver, J. W. Szostak, and R. S. Rothstein, Proc. Natl. Acad. Sci. USA 78:6354-6358, 1981), using canavanine resistance as the selectable marker. Deletions lacking the dyad failed to derepress normally and did not respond to mutations at the ADR1 locus, which encodes a protein necessary to activate ADH2. Deletions of the (dA)20 tract did not have a detectable phenotype. A small deletion located just 3' to the (dA)20 tract (between positions -164 and -146) had a low amount of ADR1-dependent transcription during repressed growth conditions, indicating that the regulatory protein encoded by ADR1 is present in a potentially active form during repression and that alterations of a DNA sequence in the promoter region can unmask its latent activity.

1986 ◽  
Vol 6 (6) ◽  
pp. 1894-1902
Author(s):  
J Shuster ◽  
J Yu ◽  
D Cox ◽  
R V Chan ◽  
M Smith ◽  
...  

DNA sequence analysis of wild-type and mutant ADH2 loci suggested that two unusual features 5' of the promoter, a 22-base-pair perfect dyad sequence and a (dA)20 tract, were important for regulation of this gene (D. W. Russell, M. Smith, D. Cox, V. M. Williamson, and E. T. Young, Nature [London] 304:652-654, 1983). Oligonucleotide-directed mutagenesis was used to construct ADH2 genes lacking the 22-base-pair dyad or the (dA)20 tract (V.-L. Chan and M. Smith, Nucleic Acids Res. 12:2407-2419, 1984). These mutant genes and other ADH2 deletions constructed by BAL 31 endonuclease digestion were studied after replacing the wild-type chromosomal locus with the altered alleles by the technique of gene transplacement (T. L. Orr-Weaver, J. W. Szostak, and R. S. Rothstein, Proc. Natl. Acad. Sci. USA 78:6354-6358, 1981), using canavanine resistance as the selectable marker. Deletions lacking the dyad failed to derepress normally and did not respond to mutations at the ADR1 locus, which encodes a protein necessary to activate ADH2. Deletions of the (dA)20 tract did not have a detectable phenotype. A small deletion located just 3' to the (dA)20 tract (between positions -164 and -146) had a low amount of ADR1-dependent transcription during repressed growth conditions, indicating that the regulatory protein encoded by ADR1 is present in a potentially active form during repression and that alterations of a DNA sequence in the promoter region can unmask its latent activity.


1991 ◽  
Vol 11 (2) ◽  
pp. 737-745
Author(s):  
P Detloff ◽  
J Sieber ◽  
T D Petes

Heteroduplexes formed between DNA strands derived from different homologous chromosomes are an intermediate in meiotic crossing over in the yeast Saccharomyces cerevisiae and other eucaryotes. A heteroduplex formed between wild-type and mutant genes will contain a base pair mismatch; failure to repair this mismatch will lead to postmeiotic segregation (PMS). By analyzing the frequency of PMS for various mutant alleles in the yeast HIS4 gene, we showed that C/C mismatches were inefficiently repaired relative to all other point mismatches. These other mismatches (G/G, G/A, T/T, A/A, T/C, C/A, A/A, and T/G) were repaired with approximately the same efficiency. We found that in spores with unrepaired mismatches in heteroduplexes, the nontranscribed strand of the HIS4 gene was more frequently donated than the transcribed strand. In addition, the direction of repair for certain mismatches was nonrandom.


Genetics ◽  
1988 ◽  
Vol 118 (1) ◽  
pp. 21-29
Author(s):  
N Benson ◽  
P Sugiono ◽  
P Youderian

Abstract The critical operator determinants for lambda repressor recognition have been defined by analyzing the binding of wild-type repressor to a set of mutant operators in vivo. Base pair substitutions at six positions within the lambda operator half-site impair binding severely, and define these base pairs as critical for operator function. One mutant operator binds repressor better than the consensus operator, and is a superoperator. The model proposed by M. Lewis in 1983 for the binding of lambda repressor to its operator accurately predicts the observed operator requirements for binding in vivo, with several minor exceptions. The order of affinities of the six natural lambda operators has also been determined.


1991 ◽  
Vol 11 (2) ◽  
pp. 737-745 ◽  
Author(s):  
P Detloff ◽  
J Sieber ◽  
T D Petes

Heteroduplexes formed between DNA strands derived from different homologous chromosomes are an intermediate in meiotic crossing over in the yeast Saccharomyces cerevisiae and other eucaryotes. A heteroduplex formed between wild-type and mutant genes will contain a base pair mismatch; failure to repair this mismatch will lead to postmeiotic segregation (PMS). By analyzing the frequency of PMS for various mutant alleles in the yeast HIS4 gene, we showed that C/C mismatches were inefficiently repaired relative to all other point mismatches. These other mismatches (G/G, G/A, T/T, A/A, T/C, C/A, A/A, and T/G) were repaired with approximately the same efficiency. We found that in spores with unrepaired mismatches in heteroduplexes, the nontranscribed strand of the HIS4 gene was more frequently donated than the transcribed strand. In addition, the direction of repair for certain mismatches was nonrandom.


1991 ◽  
Vol 11 (1) ◽  
pp. 218-225
Author(s):  
B A Kunz ◽  
X L Kang ◽  
L Kohalmi

Inactivation of the Saccharomyces cerevisiae RAD18 gene confers a mutator phenotype. To determine the specificity of this effect, a collection of 212 spontaneous SUP4-o mutants arising in a rad18 strain was characterized by DNA sequencing. Comparison of the resulting mutational spectrum with that for an isogenic wild-type (RAD18) strain revealed that the rad18 mutator specifically enhanced the frequency of single base pair substitutions. Further analysis indicated that an increase in the frequency of G.C----T.A transversions accounted for the elevated SUP4-o mutation frequency. Thus, rad18 is the first eucaryotic mutator found to generate only a particular base pair substitution. The majority of G.C pairs that were not mutated in the rad18 background were at sites where G.C----T.A events can be detected in SUP4-o, suggesting that DNA sequence context influences the rad18 mutator effect. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad18 mutator did not reduce the efficiency of correcting G-A or C-T mismatches to G.C pairs or preferentially correct the mismatches to A.T pairs. We propose that the RAD18 gene product might contribute to the fidelity of DNA replication in S. cerevisiae by involvement in a process that serves to limit the formation of G-A and C-T mismatches at template guanine and cytosine sites during DNA synthesis.


1991 ◽  
Vol 11 (1) ◽  
pp. 218-225 ◽  
Author(s):  
B A Kunz ◽  
X L Kang ◽  
L Kohalmi

Inactivation of the Saccharomyces cerevisiae RAD18 gene confers a mutator phenotype. To determine the specificity of this effect, a collection of 212 spontaneous SUP4-o mutants arising in a rad18 strain was characterized by DNA sequencing. Comparison of the resulting mutational spectrum with that for an isogenic wild-type (RAD18) strain revealed that the rad18 mutator specifically enhanced the frequency of single base pair substitutions. Further analysis indicated that an increase in the frequency of G.C----T.A transversions accounted for the elevated SUP4-o mutation frequency. Thus, rad18 is the first eucaryotic mutator found to generate only a particular base pair substitution. The majority of G.C pairs that were not mutated in the rad18 background were at sites where G.C----T.A events can be detected in SUP4-o, suggesting that DNA sequence context influences the rad18 mutator effect. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad18 mutator did not reduce the efficiency of correcting G-A or C-T mismatches to G.C pairs or preferentially correct the mismatches to A.T pairs. We propose that the RAD18 gene product might contribute to the fidelity of DNA replication in S. cerevisiae by involvement in a process that serves to limit the formation of G-A and C-T mismatches at template guanine and cytosine sites during DNA synthesis.


2007 ◽  
Vol 20 (11) ◽  
pp. 1421-1430 ◽  
Author(s):  
Christian Sohlenkamp ◽  
Kanaan A. Galindo-Lagunas ◽  
Ziqiang Guan ◽  
Pablo Vinuesa ◽  
Sally Robinson ◽  
...  

Lysyl-phosphatidylglycerol (LPG) is a well-known membrane lipid in several gram-positive bacteria but is almost unheard of in gram-negative bacteria. In Staphylococcus aureus, the gene product of mprF is responsible for LPG formation. Low pH-inducible genes, termed lpiA, have been identified in the gram-negative α-proteobacteria Rhizobium tropici and Sinorhizobium medicae in screens for acid-sensitive mutants and they encode homologs of MprF. An analysis of the sequenced bacterial genomes reveals that genes coding for homologs of MprF from S. aureus are present in several classes of organisms throughout the bacterial kingdom. In this study, we show that the expression of lpiA from R. tropici in the heterologous hosts Escherichia coli and Sinorhizobium meliloti causes formation of LPG. A wild-type strain of R. tropici forms LPG (about 1% of the total lipids) when the cells are grown in minimal medium at pH 4.5 but not when grown in minimal medium at neutral pH or in complex tryptone yeast (TY) medium at either pH. LPG biosynthesis does not occur when lpiA is deleted and is restored upon complementation of lpiA-deficient mutants with a functional copy of the lpiA gene. When grown in the low-pH medium, lpiA-deficient rhizobial mutants are over four times more susceptible to the cationic peptide polymyxin B than the wild type.


Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 667-678
Author(s):  
Mary Lee S Ledbetter ◽  
Rollin D Hotchkiss

ABSTRACT A sulfonamide-resistant mutant of pneumococcus, sulr-c, displays a genetic instability, regularly segregating to wild type. DNA extracts of derivatives of the strain possess transforming activities for both the mutant and wild-type alleles, establishing that the strain is a partial diploid. The linkage of sulr-c to strr-61, a stable chromosomal marker, was established, thus defining a chromosomal locus for sulr-c. DNA isolated from sulr-c cells transforms two mutant recipient strains at the same low efficiency as it does a wild-type recipient, although the mutant property of these strains makes them capable of integrating classical "low-efficiency" donor markers equally as efficiently as "high efficiency" markers. Hence sulr-c must have a different basis for its low efficiency than do classical low efficiency point mutations. We suggest that the DNA in the region of the sulr-c mutation has a structural abnormality which leads both to its frequent segregation during growth and its difficulty in efficiently mediating genetic transformation.


1992 ◽  
Vol 12 (9) ◽  
pp. 3827-3833 ◽  
Author(s):  
T H Adams ◽  
W A Hide ◽  
L N Yager ◽  
B N Lee

In contrast to many other cases in microbial development, Aspergillus nidulans conidiophore production initiates primarily as a programmed part of the life cycle rather than as a response to nutrient deprivation. Mutations in the acoD locus result in "fluffy" colonies that appear to grow faster than the wild type and proliferate as undifferentiated masses of vegetative cells. We show that unlike wild-type strains, acoD deletion mutants are unable to make conidiophores under optimal growth conditions but can be induced to conidiate when growth is nutritionally limited. The requirement for acoD in conidiophore development occurs prior to activation of brlA, a primary regulator of development. The acoD transcript is present both in vegetative hyphae prior to developmental induction and in developing cultures. However, the effects of acoD mutations are detectable only after developmental induction. We propose that acoD activity is primarily controlled at the posttranscriptional level and that it is required to direct developmentally specific changes that bring about growth inhibition and activation of brlA expression to result in conidiophore development.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


Sign in / Sign up

Export Citation Format

Share Document