Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro

1989 ◽  
Vol 9 (2) ◽  
pp. 469-476
Author(s):  
J D Roberts ◽  
B D Preston ◽  
L A Johnston ◽  
A Soni ◽  
L A Loeb ◽  
...  

We determined the fidelity of avian myeloblastosis virus and Moloney murine leukemia virus reverse transcriptases (RTs) during DNA synthesis in vitro using the M13mp2 lacZ alpha gene as a mutational target. Both RTs commit an error approximately once for every 30,000 nucleotides polymerized. DNA sequence analysis of mutants generated in a forward mutation assay capable of detecting many types of errors demonstrated that avian myeloblastosis virus RT produced a variety of different mutations. The majority (58%) were single-base substitutions; all of which resulted from the misincorporation of either dAMP or dGMP. Minus-one frameshifts were also common, composing about 30% of the mutations. In addition to single-base events, eight mutants contained sequence changes involving from 2 to 59 bases. The frequency of these mutants suggests that, at least during DNA synthesis in vitro, RTs also commit errors by mechanisms other than classical base miscoding and misalignment. We examined the ability of RTs to synthesize DNA from a mismatched primer terminus at a sequence where the mismatched base was complementary to the next base in the template. Unlike cellular DNA polymerases which polymerize from the mismatched template-primer, RTs preferred to polymerize from a rearranged template-primer containing a matched terminal base pair and an unpaired base in the template strand. The unusual preference for this substrate suggests that the interactions between RTs and the template-primer are different from those of cellular DNA polymerases. The overall error rate of RT in vitro is sufficient to account for the estimated mutation rate of these viruses.

1989 ◽  
Vol 9 (2) ◽  
pp. 469-476 ◽  
Author(s):  
J D Roberts ◽  
B D Preston ◽  
L A Johnston ◽  
A Soni ◽  
L A Loeb ◽  
...  

We determined the fidelity of avian myeloblastosis virus and Moloney murine leukemia virus reverse transcriptases (RTs) during DNA synthesis in vitro using the M13mp2 lacZ alpha gene as a mutational target. Both RTs commit an error approximately once for every 30,000 nucleotides polymerized. DNA sequence analysis of mutants generated in a forward mutation assay capable of detecting many types of errors demonstrated that avian myeloblastosis virus RT produced a variety of different mutations. The majority (58%) were single-base substitutions; all of which resulted from the misincorporation of either dAMP or dGMP. Minus-one frameshifts were also common, composing about 30% of the mutations. In addition to single-base events, eight mutants contained sequence changes involving from 2 to 59 bases. The frequency of these mutants suggests that, at least during DNA synthesis in vitro, RTs also commit errors by mechanisms other than classical base miscoding and misalignment. We examined the ability of RTs to synthesize DNA from a mismatched primer terminus at a sequence where the mismatched base was complementary to the next base in the template. Unlike cellular DNA polymerases which polymerize from the mismatched template-primer, RTs preferred to polymerize from a rearranged template-primer containing a matched terminal base pair and an unpaired base in the template strand. The unusual preference for this substrate suggests that the interactions between RTs and the template-primer are different from those of cellular DNA polymerases. The overall error rate of RT in vitro is sufficient to account for the estimated mutation rate of these viruses.


1995 ◽  
Vol 50 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
Gerhard Erkel ◽  
Kirsten Lorenzen ◽  
Timm Anke ◽  
Robert Velten ◽  
Alberto Gimenez ◽  
...  

Abstract In a search for new inhibitors of RNA-directed DNA-polymerases kuehneromycin A (1) was isolated from fermentations of a Tasmanian Kuehneromyces species. Its structure was elucidated by spectroscopic methods. Kuehneromycin A (1) is a non-competitive inhibitor of avian myeloblastosis virus (Ki 200 μᴍ) and moloney murine leukemia virus (Ki 40 μᴍ) reverse transcriptases. The second compound, kuehneromycin B (2) is a strong inhibitor of platelet aggregation stimulated with different inducers. In addition, both compounds exhibit cytotoxic and antimicrobial activities.


1994 ◽  
Vol 49 (9-10) ◽  
pp. 561-570 ◽  
Author(s):  
Robert Velten ◽  
Alberto Gimenez ◽  
Wolfgang Steglich

Abstract In a search for inhibitors of RNA-directed DNA polymerases a new isolactarane sesquiterpenoid, hyphodontal (1), was isolated from fermentations of a Canadian Hyphodontia species. Its structure was elucidated by spectroscopic methods. Hyphodontal strongly inhibits the growth of several yeasts and is a non-competitive inhibitor of avian myeloblastosis virus (Ki 346 μᴍ) and Moloney murine leukemia virus (Ki 112 μᴍ) reverse transcriptases. In addition, cytotoxic and antifungal activities were observed.


2003 ◽  
Vol 77 (9) ◽  
pp. 5275-5285 ◽  
Author(s):  
Sharon J. Schultz ◽  
Miaohua Zhang ◽  
James J. Champoux

ABSTRACT Successful generation, extension, and removal of the plus-strand primer is integral to reverse transcription. For Moloney murine leukemia virus, primer removal at the RNA/DNA junction leaves the 3′ terminus of the plus-strand primer abutting the downstream plus-strand DNA, but this 3′ terminus is not efficiently reutilized for another round of extension. The RNase H cleavage to create the plus-strand primer might similarly result in the 3′ terminus of this primer abutting downstream RNA, yet efficient initiation must occur to synthesize the plus-strand DNA. We hypothesized that displacement synthesis, RNase H activity, or both must participate to initiate plus-strand DNA synthesis. Using model hybrid substrates and RNase H-deficient reverse transcriptases, we found that displacement synthesis alone did not efficiently extend the plus-strand primer at a nick with downstream RNA. However, specific cleavage sites for RNase H were identified in the sequence immediately following the 3′ end of the plus-strand primer. During generation of the plus-strand primer, cleavage at these sites generated a gap. When representative gaps separated the 3′ terminus of the plus-strand primer from downstream RNA, primer extension significantly improved. The contribution of RNase H to the initiation of plus-strand DNA synthesis was confirmed by comparing the effects of downstream RNA versus DNA on plus-strand primer extension by wild-type reverse transcriptase. These data suggest a model in which efficient initiation of plus-strand synthesis requires the generation of a gap immediately following the plus-strand primer 3′ terminus.


2021 ◽  
Author(s):  
Ruofan Wang ◽  
Ashton T. Belew ◽  
Vasudevan Achuthan ◽  
Najib M. El-Sayed ◽  
Jeffrey J DeStefano

Reverse transcriptases (RTs) are typically assayed in vitro using optimized Mg2+ concentrations (~ 5-10 mM) that are several-fold higher than physiological cellular free Mg2+ (~ 0.5 mM). Analysis of fidelity using lacZα-based α-complementation assays showed that tested HIV RTs, including HIV-1 from subtype B (HXB2-derived), HIV-2, subtype A/E, and several drug-resistant HXB2 derivatives all showed significantly higher fidelity using physiological Mg2+. This also occurred with prototype foamy virus (PFV) RT. In contrast, Moloney murine leukemia virus (MuLV) and avian myeloblastosis virus (AMV) RTs demonstrated equivalent fidelity in both low and high Mg2+. In 0.5 mM Mg2+, all RTs demonstrated ≈ equal fidelity, except for PFV RT which showed higher fidelity. A Next Generation Sequencing (NGS) approach that used barcoding to accurately determine mutation rates and profiles was used to examine the types of mutations made by HIV-1 (subtype B, wild type) in low (0.5 mM) and high (6 mM) Mg2+ with DNA or RNA that coded for lacZα. Unlike the α-complementation assay, which is dependent on LacZα activity, the NGS assay scores mutations at all positions and of every type. A ~ 4-fold increase in substitution mutations was observed in high Mg2+. The general trend was an exacerbation in high Mg2+ of more common mutation in low Mg2+, rather than the creation of new mutation hotspots. These findings help explain why HIV RT displays lower fidelity in vitro (with high Mg2+ concentrations) than other RTs (e.g., MuLV and AMV), yet cellular fidelity for these viruses is comparable.


2017 ◽  
Vol 114 (10) ◽  
pp. 2723-2728 ◽  
Author(s):  
Mathilda Sjöberg ◽  
Robin Löving ◽  
Birgitta Lindqvist ◽  
Henrik Garoff

Viral membrane fusion proteins of class I are trimers in which the protomeric unit is a complex of a surface subunit (SU) and a fusion active transmembrane subunit (TM). Here we have studied how the protomeric units of Moloney murine leukemia virus envelope protein (Env) are activated in relation to each other, sequentially or simultaneously. We followed the isomerization of the SU-TM disulfide and subsequent SU release from Env with biochemical methods and found that this early activation step occurred sequentially in the three protomers, generating two asymmetric oligomer intermediates according to the scheme (SU-TM)3→ (SU-TM)2TM → (SU-TM)TM2→ TM3. This was the case both when activation was triggered in vitro by depleting stabilizing Ca2+from solubilized Env and when viral Env was receptor triggered on rat XC cells. In the latter case, the activation reaction was too fast for direct observation of the intermediates, but they could be caught by alkylation of the isomerization active thiol.


1987 ◽  
Vol 7 (10) ◽  
pp. 3459-3465
Author(s):  
B Lim ◽  
D A Williams ◽  
S H Orkin

Simplified Moloney murine leukemia virus-based recombinant retrovirus vectors have been constructed which transduce human adenosine deaminase (ADA) cDNA. ADA transcription is under the control of the constitutive promoter for the human X chromosome phosphoglycerate kinase (pgk) gene. In these simplified vectors, dominant selectable markers are not included and selection is dependent on overproduction of functional ADA enzyme. Primary murine hematopoietic cells were infected with helper-free recombinant ADA virus generated from Psi-2 packaging cells. Protein analysis revealed that human ADA enzyme was expressed in progenitor-derived hematopoietic colonies in vitro and CFU-S-derived spleen colonies in vivo. Enzyme expression was dependent on transcription from the pgk promoter. ADA expression in primary murine hematopoietic cells directed by the internal promoter was not adversely affected by the presence of the Moloney virus long terminal repeat enhancer sequence. Use of these vectors allows systematic evaluation of the effects of specific sequences in recombinant retrovirus vectors on expression in primary murine hematopoietic cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document