Rolling-circle replication of bacterial plasmids

1997 ◽  
Vol 61 (4) ◽  
pp. 442-455
Author(s):  
S A Khan

Many bacterial plasmids replicate by a rolling-circle (RC) mechanism. Their replication properties have many similarities to as well as significant differences from those of single-stranded DNA (ssDNA) coliphages, which also replicate by an RC mechanism. Studies on a large number of RC plasmids have revealed that they fall into several families based on homology in their initiator proteins and leading-strand origins. The leading-strand origins contain distinct sequences that are required for binding and nicking by the Rep proteins. Leading-strand origins also contain domains that are required for the initiation and termination of replication. RC plasmids generate ssDNA intermediates during replication, since their lagging-strand synthesis does not usually initiate until the leading strand has been almost fully synthesized. The leading- and lagging-strand origins are distinct, and the displaced leading-strand DNA is converted to the double-stranded form by using solely the host proteins. The Rep proteins encoded by RC plasmids contain specific domains that are involved in their origin binding and nicking activities. The replication and copy number of RC plasmids, in general, are regulated at the level of synthesis of their Rep proteins, which are usually rate limiting for replication. Some RC Rep proteins are known to be inactivated after supporting one round of replication. A number of in vitro replication systems have been developed for RC plasmids and have provided insight into the mechanism of plasmid RC replication.

2007 ◽  
Vol 81 (11) ◽  
pp. 5696-5704 ◽  
Author(s):  
Tobias Steinfeldt ◽  
Tim Finsterbusch ◽  
Annette Mankertz

ABSTRACT The replication proteins Rep and Rep′ of porcine circovirus type 1 (PCV1) are both capable of introducing and resealing strand discontinuities at the viral origin of DNA replication in vitro underlying genome amplification by rolling-circle replication. The PCV1 origin of replication encompasses the minimal binding site (MBS) of the Rep and Rep′ proteins and an inverted repeat with the potential to form a stem-loop. In this study, both elements of the PCV1 origin were demonstrated to be essential for viral replication in transfected cells. Furthermore, investigation of conserved amino acid motifs within Rep and Rep′ proteins revealed that the mutation of motifs I, II, and III and of the GKS box interfered with viral replication. In vitro studies demonstrated that motifs I to III were essential for origin cleavage, while the GKS box was dispensable for the initiation of viral replication. A covalent link between Rep/Rep′ and the DNA after origin cleavage was demonstrated, providing a mechanism for energy conservation for the termination of replication.


2019 ◽  
Vol 116 (4) ◽  
pp. 1251-1260 ◽  
Author(s):  
Glen E. Cronan ◽  
Elena A. Kouzminova ◽  
Andrei Kuzminov

In vitro, purified replisomes drive model replication forks to synthesize continuous leading strands, even without ligase, supporting the semidiscontinuous model of DNA replication. However, nascent replication intermediates isolated from ligase-deficientEscherichia colicomprise only short (on average 1.2-kb) Okazaki fragments. It was long suspected that cells replicate their chromosomal DNA by the semidiscontinuous mode observed in vitro but that, in vivo, the nascent leading strand was artifactually fragmented postsynthesis by excision repair. Here, using high-resolution separation of pulse-labeled replication intermediates coupled with strand-specific hybridization, we show that excision-proficientE. coligenerates leading-strand intermediates >10-fold longer than lagging-strand Okazaki fragments. Inactivation of DNA-repair activities, including ribonucleotide excision, further increased nascent leading-strand size to ∼80 kb, while lagging-strand Okazaki fragments remained unaffected. We conclude that in vivo, repriming occurs ∼70× less frequently on the leading versus lagging strands, and that DNA replication inE. coliis effectively semidiscontinuous.


2006 ◽  
Vol 188 (21) ◽  
pp. 7416-7425 ◽  
Author(s):  
J. A. Ruiz-Masó ◽  
S. P. Anand ◽  
M. Espinosa ◽  
S. A. Khan ◽  
G. del Solar

ABSTRACT PcrA is a chromosomally encoded DNA helicase of gram-positive bacteria involved in replication of rolling circle replicating plasmids. Efficient interaction between PcrA and the plasmid-encoded replication initiator (Rep) protein is considered a requirement for the plasmid to replicate in a given host, and thus, the ability of a Rep protein to interact with heterologous PcrA helicases has been invoked as a determinant of plasmid promiscuity. We characterized transcription of the Streptococcus pneumoniae pcrA gene in its genetic context and studied the biochemical properties of its product, the PcrA Spn helicase. Transcription of the pneumococcal pcrA gene was directed by promoter Pa, consisting of an extended −10 box. Promoter Pa also accounted for expression of a second essential gene, radC, which was transcribed with much lower efficiency than pcrA, probably due to the presence of a terminator/attenuator sequence located between the two genes. PcrA Spn displayed single-stranded DNA-dependent ATPase activity. PcrA Spn showed 5′→3′ and 3′→5′ helicase activities and bound efficiently to partially duplex DNA containing a hairpin structure adjacent to a 6-nucleotide 5′ or 3′ single-stranded tail and one unpaired (flap) nucleotide in the complementary strand. PcrA Spn interacted specifically with RepC, the initiator of staphylococcal plasmid pT181. Although the pneumococcal helicase was able to initiate unwinding of the RepC-nicked pT181 DNA, it was much less processive in this activity than the cognate staphylococcal PcrA protein. Accordingly, PcrA Spn was inefficient in in vitro replication of pT181, and perhaps as a consequence, this plasmid could not be established in S. pneumoniae.


2016 ◽  
Vol 113 (21) ◽  
pp. 5916-5921 ◽  
Author(s):  
Alfredo J. Hernandez ◽  
Seung-Joo Lee ◽  
Charles C. Richardson

DNA replication occurs semidiscontinuously due to the antiparallel DNA strands and polarity of enzymatic DNA synthesis. Although the leading strand is synthesized continuously, the lagging strand is synthesized in small segments designated Okazaki fragments. Lagging-strand synthesis is a complex event requiring repeated cycles of RNA primer synthesis, transfer to the lagging-strand polymerase, and extension effected by cooperation between DNA primase and the lagging-strand polymerase. We examined events controlling Okazaki fragment initiation using the bacteriophage T7 replication system. Primer utilization by T7 DNA polymerase is slower than primer formation. Slow primer release from DNA primase allows the polymerase to engage the complex and is followed by a slow primer handoff step. The T7 single-stranded DNA binding protein increases primer formation and extension efficiency but promotes limited rounds of primer extension. We present a model describing Okazaki fragment initiation, the regulation of fragment length, and their implications for coordinated leading- and lagging-strand DNA synthesis.


2000 ◽  
Vol 74 (20) ◽  
pp. 9451-9463 ◽  
Author(s):  
Hiroyuki Nakai ◽  
Theresa A. Storm ◽  
Mark A. Kay

ABSTRACT Recombinant adeno-associated virus (rAAV) vectors stably transduce hepatocytes in experimental animals. Following portal-vein administration of rAAV vectors in vivo, single-stranded (ss) rAAV genomes become double stranded (ds), circularized, and/or concatemerized concomitant with a slow rise and, eventually, steady-state levels of transgene expression. Over time, at least some of the stabilized genomes become integrated into mouse chromosomal DNA. The mechanism(s) of formation of stable ds rAAV genomes from input ss DNA molecules has not been delineated, although second-strand synthesis and genome amplification by a rolling-circle model has been proposed. To begin to delineate a mechanism, we produced rAAV vectors in the presence of bacterial PaeR7 or Dam methyltransferase or constructed rAAV vectors labeled with different restriction enzyme recognition sites and introduced them into mouse hepatocytes in vivo. A series of molecular analyses demonstrated that second-strand synthesis and rolling-circle replication did not appear to be the major processes involved in the formation of stable ds rAAV genomes. Rather, recruitment of complementary plus and minus ss genomes and subsequent random head-to-head, head-to-tail, and tail-to-tail intermolecular joining were primarily responsible for the formation of ds vector genomes. These findings contrast with the previously described mechanism(s) of transduction based on in vitro studies. Understanding the mechanistic process responsible for vector transduction may allow the development of new strategies for improving rAAV-mediated gene transfer in vivo.


2021 ◽  
Author(s):  
Kristen LeGault ◽  
Zachary Barth ◽  
Peter DePaola ◽  
Kimberley Seed

PLEs are phage parasites integrated into the chromosome of epidemic Vibrio cholerae. In response to infection by its viral host ICP1, PLE excises, replicates and hijacks ICP1 structural components for transduction. Through an unknown mechanism PLE prevents ICP1 from transitioning to rolling circle replication (RCR), a prerequisite for efficient packaging of the viral genome. Here, we characterize a PLE-encoded nuclease, NixI, that blocks phage development likely by nicking ICP1s genome as it transitions to RCR. NixI-dependent cleavage sites appear in ICP1s genome during infection of PLE(+) V. cholerae. Purified NixI demonstrates in vitro specificity for sites in ICP1s genome and NixI activity is enhanced by a putative specificity determinant co-expressed with NixI during phage infection. Importantly, NixI is sufficient to limit ICP1 genome replication and eliminate progeny production. We identify distant NixI homologs in an expanded family of putative phage satellites in Vibrios that lack nucleotide homology to PLEs but nonetheless share genomic synteny with PLEs. More generally, our results reveal a previously unknown mechanism deployed by phage parasites to limit packaging of their viral hosts genome and highlight the prominent role of nuclease effectors as weapons in the arms race between antagonizing genomes.


2003 ◽  
Vol 77 (14) ◽  
pp. 8048-8060 ◽  
Author(s):  
Sylvie Lachmann ◽  
Jean Rommeleare ◽  
Jürg P. F. Nüesch

ABSTRACT The multifunctional protein NS1 of minute virus of mice (MVMp) is posttranslationally modified and at least in part regulated by phosphorylation. The atypical lambda isoform of protein kinase C (PKCλ) phosphorylates residues T435 and S473 in vitro and in vivo, leading directly to an activation of NS1 helicase function, but it is insufficient to activate NS1 for rolling circle replication. The present study identifies an additional cellular protein kinase phosphorylating and regulating NS1 activities. We show in vitro that the recombinant novel PKCη phosphorylates NS1 and in consequence is able to activate the viral polypeptide in concert with PKCλ for rolling circle replication. Moreover, this role of PKCη was confirmed in vivo. We thereby created stably transfected A9 mouse fibroblasts, a typical MVMp-permissive host cell line with Flag-tagged constitutively active or inactive PKCη mutants, in order to alter the activity of the NS1 regulating kinase. Indeed, tryptic phosphopeptide analyses of metabolically 32P-labeled NS1 expressed in the presence of a dominant-negative mutant, PKCηDN, showed a lack of distinct NS1 phosphorylation events. This correlates with impaired synthesis of viral DNA replication intermediates, as detected by Southern blotting at the level of the whole cell population and by BrdU incorporation at the single-cell level. Remarkably, MVM infection triggers an accumulation of endogenous PKCη in the nuclear periphery, suggesting that besides being a target for PKCη, parvovirus infections may also affect the regulation of this NS1 regulating kinase. Altogether, our results underline the tight interconnection between PKC-mediated signaling and the parvoviral life cycle.


2014 ◽  
Vol 89 (1) ◽  
pp. 165-180 ◽  
Author(s):  
Nagraj Mani ◽  
Alexander Yuzhakov ◽  
Olga Yuzhakov ◽  
Joyce T. Coll ◽  
Jim Black ◽  
...  

ABSTRACTThe precise role(s) and topological organization of different factors in the hepatitis C virus (HCV) RNA replication complex are not well understood. In order to elucidate the role of viral and host proteins in HCV replication, we have developed a novelin vitroreplication system that utilizes a rolling-circle RNA template. Under close-to-physiological salt conditions, HCV NS5BΔ21, an RNA-dependent RNA polymerase, has poor affinity for the RNA template. Human replication protein A (RPA) and HCV NS5A recruit NS5BΔ21 to the template. Subsequently, NS3 is recruited to the replication complex by NS5BΔ21, resulting in RNA synthesis stimulation by helicase. Both RPA and NS5A(S25-C447), but not NS5A(S25-K215), enabled the NS5BΔ21-NS3 helicase complex to be stably associated with the template and synthesize RNA product in a highly processive mannerin vitro. This newin vitroHCV replication system is a useful tool that may facilitate the study of other replication factors and aid in the discovery of novel inhibitors of HCV replication.IMPORTANCEThe molecular mechanism of hepatitis C virus (HCV) replication is not fully understood, but viral and host proteins collaborate in this process. Using a rolling-circle RNA template, we have reconstituted anin vitroHCV replication system that allows us to interrogate the role of viral and host proteins in HCV replication and delineate the molecular interactions. We showed that HCV NS5A(S25-C447)and cellular replication protein A (RPA) functionally cooperate as a processivity factor to stimulate HCV replication by HCV NS5BΔ21 polymerase and NS3 helicase. This system paves the way to test other proteins and may be used as an assay for discovery of HCV inhibitors.


Sign in / Sign up

Export Citation Format

Share Document