putative phage
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Kristen LeGault ◽  
Zachary Barth ◽  
Peter DePaola ◽  
Kimberley Seed

PLEs are phage parasites integrated into the chromosome of epidemic Vibrio cholerae. In response to infection by its viral host ICP1, PLE excises, replicates and hijacks ICP1 structural components for transduction. Through an unknown mechanism PLE prevents ICP1 from transitioning to rolling circle replication (RCR), a prerequisite for efficient packaging of the viral genome. Here, we characterize a PLE-encoded nuclease, NixI, that blocks phage development likely by nicking ICP1s genome as it transitions to RCR. NixI-dependent cleavage sites appear in ICP1s genome during infection of PLE(+) V. cholerae. Purified NixI demonstrates in vitro specificity for sites in ICP1s genome and NixI activity is enhanced by a putative specificity determinant co-expressed with NixI during phage infection. Importantly, NixI is sufficient to limit ICP1 genome replication and eliminate progeny production. We identify distant NixI homologs in an expanded family of putative phage satellites in Vibrios that lack nucleotide homology to PLEs but nonetheless share genomic synteny with PLEs. More generally, our results reveal a previously unknown mechanism deployed by phage parasites to limit packaging of their viral hosts genome and highlight the prominent role of nuclease effectors as weapons in the arms race between antagonizing genomes.


mSphere ◽  
2021 ◽  
Author(s):  
Ruijie Ma ◽  
Jiayong Lai ◽  
Xiaowei Chen ◽  
Long Wang ◽  
Yahui Yang ◽  
...  

The evolution and ecology of phages infecting members of Alteromonas , a marine opportunistic genus that is widely distributed and of great ecological significance, remain poorly understood. The present study integrates physiological and genomic evidence to characterize the properties and putative phage-host interactions of a newly isolated Alteromonas phage, vB_AcoS-R7M (R7M).


2021 ◽  
Vol 9 (5) ◽  
pp. 892
Author(s):  
Stina Hedžet ◽  
Maja Rupnik ◽  
Tomaž Accetto

Intestinal phages are abundant and important components of gut microbiota, yet the isolated and characterized representatives that infect abundant gut bacteria are sparse. Here we describe the isolation of human intestinal phages infecting Bacteroidesuniformis. Bacteroides is one of the most common bacterial groups in the global human gut microbiota; however, to date not many Bacteroides specific phages are known. Phages isolated in this study belong to a novel viral genus, Bacuni, within the Siphoviridae family. Their genomes encode diversity-generating retroelements (DGR), which were shown in other bacteriophages to promote phage adaptation to rapidly changing environmental conditions and to broaden their host range. Three isolated phages showed 99.83% genome identity but one of them infected a distinct B. uniformis strain. The tropism of Bacuni phages appeared to be dependent on the interplay of DGR mediated sequence variations of gene encoding putative phage fimbrial tip proteins and mutations in host genes coding for outer-membrane proteins. We found prophages with up to 85% amino acid similarity over two-thirds of the Bacuni phage genome in the B. acidifaciens and Prevotella sp. genomes. Despite the abundance of Bacteroides within the human microbiome, we found Bacuni phages only in a limited subset of published gut metagenomes.


2021 ◽  
Author(s):  
Fatima Aysha Hussain ◽  
Javier Dubert ◽  
Joseph Elsherbini ◽  
Mikayla Murphy ◽  
David VanInsberghe ◽  
...  

AbstractAlthough it is generally accepted that viruses (phages) drive bacterial evolution, how these dynamics play out in the wild remains poorly understood. Here we show that the arms race between phages and their hosts is mediated by large and highly diverse mobile genetic elements. These phage-defense elements display exceedingly fast evolutionary turnover, resulting in differential phage susceptibility among clonal bacterial strains while phage receptors remain invariant. Protection afforded by multiple elements is cumulative, and a single bacterial genome can harbor as many as 18 putative phage-defense elements. Overall, elements account for 90% of the flexible genome amongst closely related strains. The rapid turnover of these elements demonstrates that phage resistance is unlinked from other genomic features and that resistance to phage therapy might be as easily acquired as antibiotic resistance.


2017 ◽  
Vol 5 (48) ◽  
Author(s):  
Clarita Olvera ◽  
Rosa I. Santamaría ◽  
Patricia Bustos ◽  
Cristina Vallejo ◽  
Juan J. Montor ◽  
...  

ABSTRACT Leuconostoc citreum CW28 was isolated from pozol, a Mayan fermented corn beverage. This strain produces a cell-associated inulosucrase, the first described in bacteria. Its draft genome sequence, announced here, has an estimated size of 1.98 Mb and harbors 1,915 coding genes, 12 rRNAs, 68 tRNAs, 17 putative pseudogenes, and 1 putative phage.


Virus Genes ◽  
2015 ◽  
Vol 51 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Liyan Cao ◽  
Xuying Ge ◽  
Yu Gao ◽  
Dante S. Zarlenga ◽  
Kexiong Wang ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 320-324 ◽  
Author(s):  
S. M. Fu ◽  
John Hartung ◽  
C. Y. Zhou ◽  
H. N. Su ◽  
J. Tan ◽  
...  

Huanglongbing (HLB), also known as citrus greening, is currently the most destructive citrus disease. Anatomical analyses of HLB-affected sweet orange were carried out by light and electron microscopy. As compared with healthy citrus, the phloem plasmodesmata were plugged with callose, and in some samples the phloem was collapsed. Chloroplast structures were deformed. Prophage sequences occupy a significant portion of the genome of ‘Candidatus Liberibacter asiaticus’ and have been used to distinguish strains from Yunnan and Guangdong provinces in China and Florida. Interestingly, a large number of possible putative phage particles were observed attached on the surface of ‘Ca. L. asiaticus’ cells in plants inoculated with strain FJ3 from Fujian Province, China. Phage particles have been observed previously only in periwinkle plants artificially inoculated in Florida with ‘Ca. L. asiaticus’ that carried the SC1-type prophage. PCR assays verified the presence of the SC1-type prophage sequences previously described from this bacterium in Florida in the FJ3 isolate. This is the first time that suspected phage particles have been observed in sweet orange trees infected with ‘Ca. L. asiaticus.’


2014 ◽  
Vol 80 (22) ◽  
pp. 6888-6897 ◽  
Author(s):  
Olivier Zablocki ◽  
Lonnie van Zyl ◽  
Evelien M. Adriaenssens ◽  
Enrico Rubagotti ◽  
Marla Tuffin ◽  
...  

ABSTRACTThe metaviromes of two distinct Antarctic hyperarid desert soil communities have been characterized. Hypolithic communities, cyanobacterium-dominated assemblages situated on the ventral surfaces of quartz pebbles embedded in the desert pavement, showed higher virus diversity than surface soils, which correlated with previous bacterial community studies. Prokaryotic viruses (i.e., phages) represented the largest viral component (particularlyMycobacteriumphages) in both habitats, with an identical hierarchical sequence abundance of families of tailed phages (Siphoviridae>Myoviridae>Podoviridae). No archaeal viruses were found. Unexpectedly, cyanophages were poorly represented in both metaviromes and were phylogenetically distant from currently characterized cyanophages. Putative phage genomes were assembled and showed a high level of unaffiliated genes, mostly from hypolithic viruses. Moreover, unusual gene arrangements in which eukaryotic and prokaryotic virus-derived genes were found within identical genome segments were observed.PhycodnaviridaeandMimiviridaeviruses were the second-most-abundant taxa and more numerous within open soil. Novel virophage-like sequences (within the Sputnik clade) were identified. These findings highlight high-level virus diversity and novel species discovery potential within Antarctic hyperarid soils and may serve as a starting point for future studies targeting specific viral groups.


Sign in / Sign up

Export Citation Format

Share Document