scholarly journals Whole-Genome Sequence of the Mycoplasma mucosicanis Type Strain

2019 ◽  
Vol 8 (41) ◽  
Author(s):  
Rebecca L. Tallmadge ◽  
Patrick K. Mitchell ◽  
Renee Anderson ◽  
Rebecca Franklin-Guild ◽  
Laura B. Goodman

Whole-genome sequencing of Mycoplasma mucosicanis type strain 1642 was performed to support efforts to better understand the clinical significance of Mycoplasma infection in canine health. The availability of this sequence will also further the development of highly specific diagnostic tests.

2017 ◽  
Vol 5 (35) ◽  
Author(s):  
Hidenori Yoshizawa ◽  
Daisuke Motooka ◽  
Ryuichi Katada ◽  
Yuki Matsumoto ◽  
Shota Nakamura ◽  
...  

ABSTRACT Streptococcus tigurinus was recently described as a novel species, and some strains are highly virulent. We detected S. tigurinus in infected tissue sampled by necropsy. In order to characterize and confirm the virulence of this species, whole-genome sequencing of the pure cultured bacterium was performed. We found that the strain has specific and unique genetic elements contained in highly virulent strains of S. tigurinus.


2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Lars Lilge ◽  
Robert Hertel ◽  
Kambiz Morabbi Heravi ◽  
Marius Henkel ◽  
Fabian M. Commichau ◽  
...  

ABSTRACT The Bacillus subtilis subsp. subtilis type strain DSM10 has been used as a reference in various studies. However, detailed information about the genome has not been available. Therefore, whole-genome sequencing was performed, and the sequence was compared with that of the related B. subtilis strain NCIB3610.


2020 ◽  
Vol 9 (9) ◽  
Author(s):  
Han Ming Gan ◽  
Anutthaman Parthasarathy ◽  
Kurtis R. Henry ◽  
Michael A. Savka ◽  
Bolaji N. Thomas ◽  
...  

In this study, we report the isolation, identification, characterization, and whole-genome sequence of the endophyte Pantoea sp. strain RIT388, isolated from Distemonanthus benthamianus, a plant known for its antifungal and antibacterial properties that is commonly used for chewing sticks.


2015 ◽  
Vol 59 (3) ◽  
pp. 1696-1706 ◽  
Author(s):  
Poonam Sharma ◽  
Sushim Kumar Gupta ◽  
Seydina M. Diene ◽  
Jean-Marc Rolain

ABSTRACTFor the first time, we report the whole-genome sequence analysis ofChryseobacterium oranimenseG311, a multidrug-resistant bacterium, from a cystic fibrosis patient in France, including resistance to colistin. Whole-genome sequencing ofC. oranimenseG311 was performed using Ion Torrent PGM, and RAST, the EMBL-EBI server, and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database were used for annotation of all genes, including antibiotic resistance (AR) genes. General features of theC. oranimenseG311 draft genome were compared to the other available genomes ofChryseobacterium gleumandChryseobacteriumsp. strain CF314.C. oranimenseG311 was found to be resistant to all β-lactams, including imipenem, and to colistin. The genome size ofC. oranimenseG311 is 4,457,049 bp in length, with 37.70% GC content. We found 27 AR genes in the genome, including β-lactamase genes which showed little similarity to the known β-lactamase genes and could likely be novel. We found the type I polyketide synthase operon followed by a zeaxanthin glycosyltransferase gene in the genome, which could impart the yellow pigmentation of the isolate. We located the O-antigen biosynthesis cluster, and we also discovered a novel capsular polysaccharide biosynthesis cluster. We also found known mutations in the orthologs of thepmrA(E8D),pmrB(L208F and P360Q), andlpxA(G68D) genes. We speculate that the presence of the capsular cluster and mutations in these genes could explain the resistance of this bacterium to colistin. We demonstrate that whole-genome sequencing was successfully applied to decipher the resistome of a multidrug resistance bacterium associated with cystic fibrosis patients.


2018 ◽  
Vol 7 (17) ◽  
Author(s):  
William G. Miller ◽  
Emma Yee

Arcobacter skirrowii is a species of veterinary importance, originally recovered from the feces, aborted fetuses, and preputial fluids of livestock. We present here the whole-genome sequence of the A. skirrowii type strain LMG 6621 (= 449/80T = CCUG 10374T), isolated in the United Kingdom from a lamb diarrheal fecal sample.


2015 ◽  
Vol 81 (17) ◽  
pp. 6024-6037 ◽  
Author(s):  
Matthew J. Stasiewicz ◽  
Haley F. Oliver ◽  
Martin Wiedmann ◽  
Henk C. den Bakker

ABSTRACTWhile the food-borne pathogenListeria monocytogenescan persist in food associated environments, there are no whole-genome sequence (WGS) based methods to differentiate persistent from sporadic strains. Whole-genome sequencing of 188 isolates from a longitudinal study ofL. monocytogenesin retail delis was used to (i) apply single-nucleotide polymorphism (SNP)-based phylogenetics for subtyping ofL. monocytogenes, (ii) use SNP counts to differentiate persistent from repeatedly reintroduced strains, and (iii) identify genetic determinants ofL. monocytogenespersistence. WGS analysis revealed three prophage regions that explained differences between three pairs of phylogenetically similar populations with pulsed-field gel electrophoresis types that differed by ≤3 bands. WGS-SNP-based phylogenetics found that putatively persistentL. monocytogenesrepresent SNP patterns (i) unique to a single retail deli, supporting persistence within the deli (11 clades), (ii) unique to a single state, supporting clonal spread within a state (7 clades), or (iii) spanning multiple states (5 clades). Isolates that formed one of 11 deli-specific clades differed by a median of 10 SNPs or fewer. Isolates from 12 putative persistence events had significantly fewer SNPs (median, 2 to 22 SNPs) than between isolates of the same subtype from other delis (median up to 77 SNPs), supporting persistence of the strain. In 13 events, nearly indistinguishable isolates (0 to 1 SNP) were found across multiple delis. No individual genes were enriched among persistent isolates compared to sporadic isolates. Our data show that WGS analysis improves food-borne pathogen subtyping and identification of persistent bacterial pathogens in food associated environments.


2017 ◽  
Vol 5 (49) ◽  
Author(s):  
Taylor W. Bailey ◽  
Naila C. do Nascimento ◽  
Arun K. Bhunia

ABSTRACT Listeria monocytogenes is an opportunistic invasive foodborne pathogen. Here, we performed whole-genome sequencing of L. monocytogenes strain F4244 (serotype 4b) using Illumina sequencing. The sequence showed 94.5% identity with strain F2365, serotype 4b, and 90.6% with EGD-e, serotype 1/2a.


2020 ◽  
Vol 9 (11) ◽  
Author(s):  
Anthony Mannion ◽  
Tina McCollester ◽  
Alexander Sheh ◽  
Zeli Shen ◽  
Hilda Holcombe ◽  
...  

A fast-growing Mycobacterium species was cultured from draining, purulent lesions on the caudal abdomen of a 12-year-old male domestic long-haired cat. Whole-genome sequencing identified the organism as Mycobacterium porcinum.


2021 ◽  
Author(s):  
Dario Fernández Do Porto ◽  
Johana Monteserin ◽  
Josefina Campos ◽  
Ezequiel J Sosa ◽  
Mario Matteo ◽  
...  

Abstract BackgroundWhole-genome sequencing has shown that the Mycobacterium tuberculosis infection process can be more heterogeneous than previously thought. Compartmentalized infections, exogenous reinfections, and microevolution are manifestations of this clonal complexity. The analysis of the mechanisms causing the microevolution —the genetic variability of M. tuberculosis at short time scales— of a parental strain into clonal variants with a patient is a relevant issue that has not been yet completely addressed. To our knowledge, a whole genome sequence microevolution analysis in a single patient with inadequate adherence to treatment has not been previously reported.Case Presentations In this work, we applied whole genome sequencing for a more in-depth analysis of the microevolution of a parental Mycobacterium tuberculosis strain into clonal variants within a patient with poor treatment compliance in Argentina. We analyzed the whole-genome sequence of 8 consecutive Mycobacterium. tuberculosis isolates obtained from a patient within 57-month of intermittent therapy. Nineteen mutations (9 short-term, 10 fixed variants) emerged, most of them associated with drug resistance. The first isolate was already resistant to isoniazid, rifampicin, and streptomycin, thereafter the strain developed resistance to fluoroquinolones and pyrazinamide. Surprisingly, isolates remained susceptible to the pro-drug ethionamide after acquiring a frameshift mutation in ethA, a gene required for its activation. We also found a novel variant, (T-54G), in the 5' untranslated region of whiB7 (T-54G), a region allegedly related to kanamycin resistance. Notably, discrepancies between canonical and phage-based susceptibility testing to kanamycin were previously found for the isolate harboring this mutation. In our patience, microevolution was mainly driven by drug selective pressure. Rare short-term mutations fixed together with resistance-conferring mutations during therapy.ConclusionsThis report highlights the relevance of whole-genome sequencing in the clinic for characterization of pre-XDR and MDR resistance profile, particularly in patients with incomplete and/or intermittent treatment.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Julia A. Bockwoldt ◽  
Martin Zimmermann ◽  
Till Tiso ◽  
Lars M. Blank

Paracoccus spp. are metabolically versatile alphaproteobacteria able to perform heterotrophic and chemoautotrophic growth. This study describes the whole-genome sequence of the Paracoccus pantotrophus type strain DSM 2944 (ATCC 35512, LMD 82.5, GB17). The genome sequence revealed the presence of a complete phaZ phaC phaP phaR gene cluster related to polyhydroxyalkanoate metabolism.


Sign in / Sign up

Export Citation Format

Share Document