scholarly journals A Core Genome Multilocus Sequence Typing Scheme for Streptococcus mutans

mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Shanshan Liu ◽  
Xiaoliang Li ◽  
Zhenfei Guo ◽  
Hongsheng Liu ◽  
Yu Sun ◽  
...  

ABSTRACT Streptococcus mutans is one of the primary pathogens responsible for the development of dental caries. Recent whole-genome sequencing (WGS)-based core genome multilocus sequence typing (cgMLST) approaches have been employed in epidemiological studies of specific human pathogens. However, this approach has not been reported in studies of S. mutans. Here, we therefore developed a cgMLST scheme for S. mutans. We surveyed 199 available S. mutans genomes as a means of identifying cgMLST targets, developing a scheme that incorporated 594 targets from the S. mutans UA159 reference genome. Sixty-eight sequence types (STs) were identified in this cgMLST scheme (cgSTs) in 80 S. mutans isolates from 40 children that were sequenced in this study, compared to 35 STs identified by multilocus sequence typing (MLST). Fifty-six cgSTs (82.35%) were associated with a single isolate based on our cgMLST scheme, which is significantly higher than in the MLST scheme (11.43%). In addition, 58.06% of all MLST profiles with ≥2 isolates were further differentiated by our cgMLST scheme. Topological analyses of the maximum likelihood phylogenetic trees revealed that our cgMLST scheme was more reliable than the MLST scheme. A minimum spanning tree of 145 S. mutans isolates from 10 countries developed based upon the cgMLST scheme highlighted the diverse population structure of S. mutans. This cgMLST scheme thus offers a new molecular typing method suitable for evaluating the epidemiological distribution of this pathogen and has the potential to serve as a benchmark for future global studies of the epidemiological nature of dental caries. IMPORTANCE Streptococcus mutans is regarded as a major pathogen responsible for the onset of dental caries. S. mutans can transmit among people, especially within families. In this study, we established a new epidemiological approach to S. mutans classification. This approach can effectively differentiate among closely related isolates and offers superior reliability relative to that of the traditional MLST molecular typing method. As such, it has the potential to better support effective public health strategies centered around this bacterium that are aimed at preventing and treating dental caries.

2001 ◽  
Vol 82 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Valérie Caro ◽  
Sophie Guillot ◽  
Francis Delpeyroux ◽  
Radu Crainic

To explore further the phylogenetic relationships between human enteroviruses and to develop new diagnostic approaches, we designed a pair of generic primers in order to study a 1452 bp genomic fragment (relative to the poliovirus Mahoney genome), including the 3′ end of the VP1-coding region, the 2A- and 2B-coding regions, and the 5′ moiety of the 2C-coding region. Fifty-nine of the 64 prototype strains and 45 field isolates of various origins, involving 21 serotypes and 6 strains untypeable by standard immunological techniques, were successfully amplified with these primers. By determining the nucleotide sequence of the genomic fragment encoding the C-terminal third of the VP1 capsid protein we developed a molecular typing method based on RT–PCR and sequencing. If field isolate sequences were compared to human enterovirus VP1 sequences available in databases, nucleotide identity score was, in each case, highest with the homotypic prototype (74.8 to 89.4%). Phylogenetic trees were generated from alignments of partial VP1 sequences with several phylogeny algorithms. In all cases, the new classification of enteroviruses into five identified species was confirmed and strains of the same serotype were always monophyletic. Analysis of the results confirmed that the 3′ third of the VP1-coding sequence contains serotype-specific information and can be used as the basis of an effective and rapid molecular typing method. Furthermore, the amplification of such a long genomic fragment, including non-structural regions, is straightforward and could be used to investigate genome variability and to identify recombination breakpoints or specific attributes of pathogenicity.


2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Mostafa Ghanem ◽  
Leyi Wang ◽  
Yan Zhang ◽  
Scott Edwards ◽  
Amanda Lu ◽  
...  

ABSTRACT Mycoplasma gallisepticum is the most virulent and economically important Mycoplasma species for poultry worldwide. Currently, M. gallisepticum strain differentiation based on sequence analysis of 5 loci remains insufficient for accurate outbreak investigation. Recently, whole-genome sequences (WGS) of many human and animal pathogens have been successfully used for microbial outbreak investigations. However, the massive sequence data and the diverse properties of different genes within bacterial genomes results in a lack of standard reproducible methods for comparisons among M. gallisepticum whole genomes. Here, we proposed the development of a core genome multilocus sequence typing (cgMLST) scheme for M. gallisepticum strains and field isolates. For development of this scheme, a diverse collection of 37 M. gallisepticum genomes was used to identify cgMLST targets. A total of 425 M. gallisepticum conserved genes (49.85% of M. gallisepticum genome) were selected as core genome targets. A total of 81 M. gallisepticum genomes from 5 countries on 4 continents were typed using M. gallisepticum cgMLST. Analyses of phylogenetic trees generated by cgMLST displayed a high degree of agreement with geographical and temporal information. Moreover, the high discriminatory power of cgMLST allowed differentiation between M. gallisepticum strains of the same outbreak. M. gallisepticum cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation among M. gallisepticum isolates. cgMLST provides stable and expandable nomenclature, allowing for comparison and sharing of typing results among laboratories worldwide. cgMLST offers an opportunity to harness the tremendous power of next-generation sequencing technology in applied avian mycoplasma epidemiology at both local and global levels.


2001 ◽  
Vol 33 (4) ◽  
pp. 453-459 ◽  
Author(s):  
Griselda Tudó ◽  
Julián González ◽  
Josep M. Gatell ◽  
Joan A. Caylà ◽  
Esteban Martínez ◽  
...  

2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Matthew De Furio ◽  
Sang Joon Ahn ◽  
Robert A. Burne ◽  
Stephen J. Hagen

ABSTRACTThe dental caries pathogenStreptococcus mutansis continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence ofS. mutans. Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence inS. mutans. Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H2O2), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction ofcomXin a progressive and cumulative fashion, whereas the response to H2O2displayed a strong threshold behavior. Low concentrations of H2O2had little effect on induction ofcomXor the bacteriocin genecipB, but expression of these genes declined sharply if extracellular H2O2exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H2O2, depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H2O2affect theS. mutanscompetence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others.IMPORTANCEStreptococcus mutansinhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth ofS. mutansand its important virulence-associated behaviors, such as genetic competence.S. mutanscompetence development is a complex behavior that involves two different signaling peptides and can exhibit cell-to-cell heterogeneity. Although oxidative stress is known to influenceS. mutanscompetence, it is not understood how oxidative stress interacts with the peptide signaling or affects heterogeneity. In this study, we used fluorescent reporters to probe the effect of reactive oxygen species on competence signaling at the single-cell level. Our data show that different reactive oxygen species have different effects onS. mutanscompetence, and that some portions of the signaling pathway are more acutely sensitive to oxidative stress than others.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Lin Zeng ◽  
Robert A. Burne

ABSTRACTThe dental caries pathogenStreptococcus mutanscan ferment a variety of sugars to produce organic acids. Exposure ofS. mutansto certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress inS. mutanswas demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon inS. mutans,sppRA, which was highly expressed in thefruKmutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+and Mn2+but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of thesppRAoperon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only inducedsppAexpression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression ofsppA, via a plasmid or by deletingsppR, greatly alleviated fructose-induced stress in afruKmutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show thatS. mutansis capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutansis a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon inS. mutansthat regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.


1996 ◽  
Vol 43 (5) ◽  
pp. 34S-34S ◽  
Author(s):  
PHILIPPE M. HAUSER ◽  
DOMINIQUE S. BLANC ◽  
JACQUES BILLE ◽  
AMALIO TELENTI ◽  
PATRICK FRANCIOLI

2016 ◽  
Vol 82 (7) ◽  
pp. 2187-2201 ◽  
Author(s):  
Xuelian Huang ◽  
Sara R. Palmer ◽  
Sang-Joon Ahn ◽  
Vincent P. Richards ◽  
Matthew L. Williams ◽  
...  

ABSTRACTThe ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novelStreptococcusstrain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogenStreptococcus mutans. A12 produced copious amounts of H2O2via the pyruvate oxidase enzyme that were sufficient to arrest the growth ofS. mutans. A12 also produced a protease similar to challisin (Sgc) ofStreptococcus gordoniithat was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production byS. mutans. Wild-type A12, but not ansgcmutant derivative, could protect the sensitive indicator strainStreptococcus sanguinisSK150 from killing by the bacteriocins ofS. mutans. A12, but notS. gordonii, could also block the XIP (comX-inducingpeptide) signaling pathway, which is the proximal regulator of genetic competence inS. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar toStreptococcus australisandStreptococcus parasanguinisbut sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens.


2015 ◽  
Vol 54 (2) ◽  
pp. 289-295 ◽  
Author(s):  
S. Bekal ◽  
C. Berry ◽  
A. R. Reimer ◽  
G. Van Domselaar ◽  
G. Beaudry ◽  
...  

Salmonella entericaserovar Heidelberg is the second most frequently occurring serovar in Quebec and the third-most prevalent in Canada. Given that conventional pulsed-field gel electrophoresis (PFGE) subtyping for commonSalmonellaserovars, such asS. Heidelberg, yields identical subtypes for the majority of isolates recovered, public health laboratories are desperate for new subtyping tools to resolve highly clonalS. Heidelberg strains involved in outbreak events. As PFGE was unable to discriminate isolates from three epidemiologically distinct outbreaks in Quebec, this study was conducted to evaluate whole-genome sequencing (WGS) and phylogenetic analysis as an alternative to conventional subtyping tools. Genomes of 46 isolates from 3 Quebec outbreaks (2012, 2013, and 2014) supported by strong epidemiological evidence were sequenced and analyzed using a high-quality core genome single-nucleotide variant (hqSNV) bioinformatics approach (SNV phylogenomics [SNVphyl] pipeline). Outbreaks were indistinguishable by conventional PFGE subtyping, exhibiting the same PFGE pattern (SHEXAI.0001/SHEBNI.0001). Phylogenetic analysis based on hqSNVs extracted from WGS separated the outbreak isolates into three distinct groups, 100% concordant with the epidemiological data. The minimum and maximum number of hqSNVs between isolates from the same outbreak was 0 and 4, respectively, while >59 hqSNVs were measured between 2 previously indistinguishable outbreaks having the same PFGE and phage type, thus corroborating their distinction as separate unrelated outbreaks. This study demonstrates that despite the previously reported high clonality of this serovar, the WGS-based hqSNV approach is a superior typing method, capable of resolving events that were previously indistinguishable using classic subtyping tools.


2020 ◽  
Vol 202 (24) ◽  
Author(s):  
Kevin Y. H. Liang ◽  
Fabini D. Orata ◽  
Mohammad Tarequl Islam ◽  
Tania Nasreen ◽  
Munirul Alam ◽  
...  

ABSTRACT Core genome multilocus sequence typing (cgMLST) has gained popularity in recent years in epidemiological research and subspecies-level classification. cgMLST retains the intuitive nature of traditional MLST but offers much greater resolution by utilizing significantly larger portions of the genome. Here, we introduce a cgMLST scheme for Vibrio cholerae, a bacterium abundant in marine and freshwater environments and the etiologic agent of cholera. A set of 2,443 core genes ubiquitous in V. cholerae were used to analyze a comprehensive data set of 1,262 clinical and environmental strains collected from 52 countries, including 65 newly sequenced genomes in this study. We established a sublineage threshold based on 133 allelic differences that creates clusters nearly identical to traditional MLST types, providing backwards compatibility to new cgMLST classifications. We also defined an outbreak threshold based on seven allelic differences that is capable of identifying strains from the same outbreak and closely related isolates that could give clues on outbreak origin. Using cgMLST, we confirmed the South Asian origin of modern epidemics and identified clustering affinity among sublineages of environmental isolates from the same geographic origin. Advantages of this method are highlighted by direct comparison with existing classification methods, such as MLST and single-nucleotide polymorphism-based methods. cgMLST outperforms all existing methods in terms of resolution, standardization, and ease of use. We anticipate this scheme will serve as a basis for a universally applicable and standardized classification system for V. cholerae research and epidemiological surveillance in the future. This cgMLST scheme is publicly available on PubMLST (https://pubmlst.org/vcholerae/). IMPORTANCE Toxigenic Vibrio cholerae isolates of the O1 and O139 serogroups are the causative agents of cholera, an acute diarrheal disease that plagued the world for centuries, if not millennia. Here, we introduce a core genome multilocus sequence typing scheme for V. cholerae. Using this scheme, we have standardized the definition for subspecies-level classification, facilitating global collaboration in the surveillance of V. cholerae. In addition, this typing scheme allows for quick identification of outbreak-related isolates that can guide subsequent analyses, serving as an important first step in epidemiological research. This scheme is also easily scalable to analyze thousands of isolates at various levels of resolution, making it an invaluable tool for large-scale ecological and evolutionary analyses.


Sign in / Sign up

Export Citation Format

Share Document