scholarly journals A Novel, Rapid, and Low-Volume Assay for Therapeutic Drug Monitoring of Posaconazole and Other Long-Chain Azole-Class Antifungal Drugs

mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Gregory R. Wiedman ◽  
Yanan Zhao ◽  
David S. Perlin

ABSTRACT Clinicians need a better way to accurately monitor the concentration of antimicrobials in patient samples. In this report, we describe a novel, low-sample-volume method to monitor the azole-class antifungal drug posaconazole, as well as certain other long-chain azole-class antifungal drugs in human serum samples. Posaconazole represents an important target for therapeutic drug monitoring (TDM) due to its widespread use in treating invasive fungal infections and well-recognized variability of pharmacokinetics. The current “gold standard” requires trough and peak monitoring through high-pressure liquid chromatography (HPLC) or liquid chromatography-tandem mass spectroscopy (LC-MS/MS). Other methods include bioassays that use highly susceptible strains of fungi in culture plates or 96-well formats to monitor concentrations. Currently, no method exists that is both highly accurate in detecting free drug concentrations and is also rapid. Herein, we describe a new method using reduced graphene oxide (rGO) and a fluorescently labeled aptamer, which can accurately assess clinically relevant concentrations of posaconazole and other long-chain azole-class drugs in little more than 1 h in a total volume of 100 µl. IMPORTANCE This work describes an effective assay for TDM of long-chain azole-class antifungal drugs that can be used in diluted human serum samples. This assay will provide a quick, cost-effective method for monitoring concentrations of drugs such as posaconazole that exhibit well-documented pharmacokinetic variability. Our rGO-aptamer assay has the potential to improve health care for those struggling to treat fungal infections in rural or resource-limited setting.

Author(s):  
Joan Antoni Schoenenberger-Arnaiz ◽  
Ana Aragones-Eroles ◽  
Pilar Taberner-Bonastre ◽  
Arturo Morales-Portillo

Therapeutic Drug Monitoring (TDM) is potentially a useful tool that can be employed to increase the efficacy and decrease the toxicity of antifungal drugs. The aim of this narrative review is to provide an overview of the current use of TDM in clinical practice, and to present the evidence available regarding its use in proactive clinical settings for preventing and managing treatment failure. This review also presents the existing evidence regarding the association of various clinical outcomes with specific thresholds of drug concentrations in everyday practice. Articles concerning the use of TDM of triazoles in the treatment of fungal infections were retrieved through an electronic search using PubMed. In clinical practice, TDM has an increasingly important role in the management of antifungal drugs as a consequence of the improvement in the knowledge of the pharmacokinetics and pharmacodynamics of these drugs. The currently available evidence shows a direct exposure-response relationship for triazoles, though the PK/PD profile is unpredictable. Current guidelines and treatment consensus statements recommend the proactive TDM of voriconazole, posaconazole, and itraconazole to optimize dosage regimens and improve outcomes for adult and pediatric patients.


2020 ◽  
Vol 16 ◽  
Author(s):  
Fang Fang ◽  
Ning Li ◽  
Chunli Xu ◽  
Rong Tan ◽  
Jihong Yang ◽  
...  

Objective: To develop a rapid ultra-performance liquid chromatographic (UHPLC)-UV method for vancomycin determination in human serum for therapeutic drug monitoring (TDM). Methods: Human serum samples were precipitated with 10% perchloric acid, and the supernatant after centrifugation was analyzed on an ACQUITY UHPLC BEH C18 column (2.1 × 50mm, 1.7 μm) via gradient elution with a flow rate at 0.3 mL/min. The mobile phase consisted of acetonitrile and 0.005M KH2PO4 buffer (containing 0.1% triethylamine, pH 3.4). The detection wavelength was set at 210 nm, and the column temperature was set at 40. The total runtime was 6.0 min per analysis. Results: After comprehensive validation, the method was applied to determine the concentration of vancomycin in human serum. The chromatographic peaks of vancomycin and internal standard were not interfered by endogenous matrixes. The retention time (RT) of vancomycin was 1.91 min, while the internal standard was 1.58 min. The good linearity range of vancomycin concentration was 2.5-120 μg/mL (R2>0.999). The lower limit of quantitation (LLOQ) was 2.5 μg/mL. The precision at three quality control (QC) levels (including LLOQ) was restricted within 85-115%. The extraction recovery rate of QC samples (4.0, 20.0, 60.0 μg/mL) were 101.16%、97.70%、94.90%, respectively. Inter- and intra-day precision was less than 8% (RSD). Stability tests under different storage conditions were satisfactory. In patients, the concentration of vancomycin ranged from 7.30 to 89.12 μg/mL determined by the fully validated method. Conclusion: The simple, rapid sample pretreatment procedures and short analysis time made this UHPLC-UV method suitable for therapeutic drug monitoring (TDM) of vancomycin.


2010 ◽  
Vol 878 (1) ◽  
pp. 39-44 ◽  
Author(s):  
J.W.C. Alffenaar ◽  
A.M.A. Wessels ◽  
K. van Hateren ◽  
B. Greijdanus ◽  
J.G.W. Kosterink ◽  
...  

1985 ◽  
Vol 31 (5) ◽  
pp. 737-740 ◽  
Author(s):  
P Rupchock ◽  
R Sommer ◽  
A Greenquist ◽  
R Tyhach ◽  
B Walter ◽  
...  

Abstract A reagent strip for quantifying theophylline in serum or plasma has been developed for use with the Apoenzyme Reactivation Immunoassay System (ARIS) with the Ames Seralyzer reflectance photometer. The test takes 80 s and involves comparison with a two-point calibration line, which can validly be stored in the instrument for two weeks. Results for theophylline in clinical serum samples correlate well (r greater than 0.98) with results by liquid chromatography, fluoroimmunoassay, and enzyme immunoassay procedures. The within-run CV for four concentrations of controls ranged from 3.5 to 6%; the between-run CVs ranged from 3 to 5%. This assay for use in therapeutic drug monitoring is convenient, rapid, and simple, and thus is appropriate for use in emergency rooms, physician's offices, and small laboratories.


Author(s):  
Andrew Reckers ◽  
Alan H B Wu ◽  
Chui Mei Ong ◽  
Monica Gandhi ◽  
John Metcalfe ◽  
...  

Abstract Background As global confirmed cases and deaths from coronavirus disease 2019 (COVID-19) surpass 100 and 2.2 million, respectively, quantifying the effects of the widespread treatment of remdesivir (GS-5734, Veklury) and the steroid dexamethasone is becoming increasingly important. Limited pharmacokinetic studies indicate that remdesivir concentrations in serum decrease quickly after dosing, so its primary serum metabolite GS-441524 may have more analytical utility. Objectives We developed and validated a method to quantify remdesivir, its metabolite GS-441524 and dexamethasone in human serum. Methods We used LC-MS/MS and applied the method to 23 serum samples from seven patients with severe COVID-19. Results The method has limits of detection of 0.0375 ng/mL for remdesivir, 0.375 ng/mL for GS-441524 and 3.75 ng/mL for dexamethasone. We found low intra-patient variability, but significant inter-patient variability, in remdesivir, GS-441524 and dexamethasone levels. Conclusions The significant inter-patient variability highlights the importance of therapeutic drug monitoring of COVID-19 patients and possible dose adjustment to achieve efficacy.


2010 ◽  
Vol 54 (9) ◽  
pp. 4029-4032 ◽  
Author(s):  
Werner Christian Neubauer ◽  
Monika Engelhardt ◽  
Armin König ◽  
Stefanie Hieke ◽  
Manfred Jung ◽  
...  

ABSTRACT Parallel administration of the proton pump inhibitor (PPI) esomeprazole has been shown to decrease oral bioavailability of posaconazole in healthy volunteers. We prospectively analyzed serum samples (n = 59) obtained from hematology patients (n = 27) under posaconazole prophylaxis. Patients treated concomitantly with pantoprazole had significantly lower posaconazole levels than patients without PPI treatment (median levels of 630 μg/liter versus 1,125 μg/liter, respectively). These results suggest that drug monitoring is relevant when posaconazole and pantoprazole are administered concomitantly.


Author(s):  
Kazutaka Oda ◽  
Shota Uchino ◽  
Kayo Kurogi ◽  
Mai Horikawa ◽  
Naoya Matsumoto ◽  
...  

Abstract Background Therapeutic drug monitoring for voriconazole is recommended for its optimum pharmacotherapy. Although the feedback of the measurement result of serum voriconazole concentration by outsourcing needs a certain time (days within a 1 week), there was no medical equipment for the measurement available in clinical practice. Recently, a medical equipment based on high performance liquid chromatography, named LM1010, has been developed and authorized for clinical use. In this study, to validate the clinical performance of LM1010, we compared the measured serum voriconazole concentrations by LM1010 with those by outsourcing measurement using liquid chromatography-tandem mass spectrometry. Methods We conducted the observational study approved by the institutional review board of Kumamoto University Hospital (No. 1786). Residual serum samples harvested for therapeutic drug monitoring were separated. Measured concentrations by LM1010 by the standard filter method (needs serum volume of > 400 μL) or the dilute method (needs serum volume of 150 μL) were compared with those by outsourcing, respectively. Acceptable measurement error range of 0.72–1.33 was considered. There were 69 serum samples, where the 35 or 34 samples were employed for evaluation of the standard filter method or the dilute method, respectively. Results The measured concentration using the standard filter method/outsourcing was 2.22/2.10 μg/mL as the median, 1.57–3.40/1.53–3.62 as the interquartile range, < 0.2–10.76/< 0.2–11.46 μg/mL as the range, while those using the dilute method/outsourcing was 2.36/2.29 μg/mL as the median, 1.08–2.94/1.03–3.06 as the interquartile range, 0.24–10.00/< 0.2–10.85 μg/mL as the range. The regression line for the standard filter method or the dilute method were y = 0.935x + 0.154 or y = 0.933x + 0.162, respectively. The standard filter method or the dilute method showed 11.4% samples (4/35, 95%CI 3.2–26.7%) or 8.8% samples (3/34, 95%CI 1.9–23.7%) out of the acceptable measurement error range, respectively. Conclusion Measurement of serum voriconazole concentration by LM1010 can be acceptable in clinical TDM practice.


2013 ◽  
Vol 57 (4) ◽  
pp. 1888-1894 ◽  
Author(s):  
William W. Hope ◽  
Michael VanGuilder ◽  
J. Peter Donnelly ◽  
Nicole M. A. Blijlevens ◽  
Roger J. M. Brüggemann ◽  
...  

ABSTRACTThe efficacy of voriconazole is potentially compromised by considerable pharmacokinetic variability. There are increasing insights into voriconazole concentrations that are safe and effective for treatment of invasive fungal infections. Therapeutic drug monitoring is increasingly advocated. Software to aid in the individualization of dosing would be an extremely useful clinical tool. We developed software to enable the individualization of voriconazole dosing to attain predefined serum concentration targets. The process of individualized voriconazole therapy was based on concepts of Bayesian stochastic adaptive control. Multiple-model dosage design with feedback control was used to calculate dosages that achieved desired concentration targets with maximum precision. The performance of the software program was assessed using the data from 10 recipients of an allogeneic hematopoietic stem cell transplant (HSCT) receiving intravenous (i.v.) voriconazole. The program was able to model the plasma concentrations with a high level of precision, despite the wide range of concentration trajectories and interindividual pharmacokinetic variability. The voriconazole concentrations predicted after the last dosages were largely concordant with those actually measured. Simulations provided an illustration of the way in which the software can be used to adjust dosages of patients falling outside desired concentration targets. This software appears to be an extremely useful tool to further optimize voriconazole therapy and aid in therapeutic drug monitoring. Further prospective studies are now required to define the utility of the controller in daily clinical practice.


Sign in / Sign up

Export Citation Format

Share Document