scholarly journals Chromatin-Associated Protein Complexes Link DNA Base J and Transcription Termination in Leishmania

mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bryan C. Jensen ◽  
Isabelle Q. Phan ◽  
Jacquelyn R. McDonald ◽  
Aakash Sur ◽  
Mark A. Gillespie ◽  
...  

Leishmania parasites cause a variety of serious human diseases, with no effective vaccine and emerging resistance to current drug therapy. We have previously shown that a novel DNA base called J is critical for transcription termination at the ends of the polycistronic gene clusters that are a hallmark of Leishmania and related trypanosomatids.

2019 ◽  
Author(s):  
Rudo Kieft ◽  
Yang Zhang ◽  
Alexandre P. Marand ◽  
Jose Dagoberto Moran ◽  
Robert Bridger ◽  
...  

AbstractBase J, β-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3’-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of promoters, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes important for host immune evasion. Our results provide the first direct mechanistic link between base J and regulation of Pol II termination and suggest a novel molecular model for the role of the CTD of Pol II in terminating polycistronic transcription in trypanosomatids.Author SummaryTrypanosoma brucei is an early-diverged parasitic protozoan that causes African sleeping sickness in humans. The genome of T. brucei is organized into polycistronic gene clusters that contain multiple genes that are co-transcribed from a single promoter. We have recently described the presence of a modified DNA base J and variant of histone H3 (H3.V) at transcription termination sites within gene clusters where the loss of base J and H3.V leads to read-through transcription and the expression of downstream genes. We now identify a novel stable multimeric complex containing a J binding protein (JBP3), base J glucosyltransferase (JGT), PP1 phosphatase, PP1 interactive-regulatory protein (PNUTS) and Wdr82, which we refer to as PJW/PP1. A similar complex (PTW/PP1) has been shown to be involved in Pol II termination in humans and yeast. We demonstrate that PNUTS, JBP3 and Wdr82 mutants lead to read-through transcription in T. brucei. Our data suggest the PJW/PP1 complex regulates termination by recruitment to termination sites via JBP3-base J interactions and dephosphorylation of specific proteins (including Pol II and termination factors) by PP1. These findings significantly expand our understanding of mechanisms underlying transcription termination in eukaryotes, including divergent organisms that utilize polycistronic transcription and novel epigenetic marks such as base J and H3.V. The studies also provide the first direct mechanistic link between J modification of DNA at termination sites and regulated Pol II termination and gene expression in kinetoplastids.


1993 ◽  
Vol 16 (3) ◽  
pp. 215-218 ◽  
Author(s):  
Asher A. Kornbluth ◽  
Peter Salomon ◽  
Henry S. Sacks ◽  
Roger Mitty ◽  
Henry D. Janowitz

mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Soonkyu Hwang ◽  
Namil Lee ◽  
Donghui Choe ◽  
Yongjae Lee ◽  
Woori Kim ◽  
...  

ABSTRACT Identification of transcriptional regulatory elements in the GC-rich Streptomyces genome is essential for the production of novel biochemicals from secondary metabolite biosynthetic gene clusters (smBGCs). Despite many efforts to understand the regulation of transcription initiation in smBGCs, information on the regulation of transcription termination and posttranscriptional processing remains scarce. In this study, we identified the transcriptional regulatory elements in β-lactam antibiotic-producing Streptomyces clavuligerus ATCC 27064 by determining a total of 1,427 transcript 3′-end positions (TEPs) using the term-seq method. Termination of transcription was governed by three classes of TEPs, of which each displayed unique sequence features. The data integration with transcription start sites and transcriptome data generated 1,648 transcription units (TUs) and 610 transcription unit clusters (TUCs). TU architecture showed that the transcript abundance in TU isoforms of a TUC was potentially affected by the sequence context of their TEPs, suggesting that the regulatory elements of TEPs could control the transcription level in additional layers. We also identified TU features of a xenobiotic response element (XRE) family regulator and DUF397 domain-containing protein, particularly showing the abundance of bidirectional TEPs. Finally, we found that 189 noncoding TUs contained potential cis- and trans-regulatory elements that played a major role in regulating the 5′ and 3′ UTR. These findings highlight the role of transcriptional regulatory elements in transcription termination and posttranscriptional processing in Streptomyces sp. IMPORTANCE Streptomyces sp. is a great source of bioactive secondary metabolites, including antibiotics, antifungal agents, antiparasitic agents, immunosuppressant compounds, and other drugs. Secondary metabolites are synthesized via multistep conversions of the precursor molecules from primary metabolism, governed by multicomplex enzymes from secondary metabolite biosynthetic gene clusters. As their production is closely related with the growth phase and dynamic cellular status in response to various intra- and extracellular signals, complex regulatory systems tightly control the gene expressions related to secondary metabolism. In this study, we determined genome-wide transcript 3′-end positions and transcription units in the β-lactam antibiotic producer Streptomyces clavuligerus ATCC 27064 to elucidate the transcriptional regulatory elements in transcription termination and posttranscriptional processing by integration of multiomics data. These unique features, such as transcript 3′-end sequence, potential riboregulators, and potential 3′-untranslated region (UTR) cis-regulatory elements, can be potentially used to design engineering tools that can regulate the transcript abundance of genes for enhancing secondary metabolite production.


2011 ◽  
Vol 192 (3) ◽  
pp. 447-462 ◽  
Author(s):  
Steven M. Claypool ◽  
Kevin Whited ◽  
Santi Srijumnong ◽  
Xianlin Han ◽  
Carla M. Koehler

Deficits in mitochondrial function result in many human diseases. The X-linked disease Barth syndrome (BTHS) is caused by mutations in the tafazzin gene TAZ1. Its product, Taz1p, participates in the metabolism of cardiolipin, the signature phospholipid of mitochondria. In this paper, a yeast BTHS mutant tafazzin panel is established, and 18 of the 21 tested BTHS missense mutations cannot functionally replace endogenous tafazzin. Four BTHS mutant tafazzins expressed at low levels are degraded by the intermembrane space AAA (i-AAA) protease, suggesting misfolding of the mutant polypeptides. Paradoxically, each of these mutant tafazzins assembles in normal protein complexes. Furthermore, in the absence of the i-AAA protease, increased expression and assembly of two of the BTHS mutants improve their function. However, the BTHS mutant complexes are extremely unstable and accumulate as insoluble aggregates when disassembled in the absence of the i-AAA protease. Thus, the loss of function for these BTHS mutants results from the inherent instability of the mutant tafazzin complexes.


2005 ◽  
Vol 5 (6) ◽  
pp. 603-612 ◽  
Author(s):  
A. Stewart ◽  
B. Lwaleed ◽  
D. Douglas ◽  
B. Birch

Sign in / Sign up

Export Citation Format

Share Document