mutant polypeptides
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 22 (21) ◽  
pp. 12038
Author(s):  
Tatsuki Yamazoe ◽  
Yasuyuki Nakahara ◽  
Hiroka Katsube ◽  
Yoshihiro H. Inoue

Mutations in the insulin gene (INS) are frequently associated with human permanent neonatal diabetes mellitus. However, the mechanisms underlying the onset of this genetic disease is not sufficiently decoded. We induced expression of two types of human mutant INSs in Drosophila using its ectopic expression system and investigated the resultant responses in development. Expression of the wild-type preproinsulin in the insulin-producing cells (IPCs) throughout the larval stage led to a stimulation of the overall and wing growth. However, ectopic expression of human mutant preproinsulins, hINSC96Y and hINSLB15YB16delinsH, neither of which secreted from the β-cells, could not stimulate the Drosophila growth. Furthermore, neither of the mutant polypeptides induced caspase activation leading to apoptosis. Instead, they induced expression of several markers indicating the activation of unfolded protein response, such as ER stress-dependent Xbp1 mRNA splicing and ER chaperone induction. We newly found that the mutant polypeptides induced the expression of Growth arrest and DNA-damage-inducible 45 (Gadd45) in imaginal disc cells. ER stress induced by hINSC96Y also activated the JAK-STAT signaling, involved in inflammatory responses. Collectively, we speculate that the diabetes-like growth defects appeared as a consequence of the human mutant preproinsulin expression was involved in dysfunction of the IPCs, rather than apoptosis.


2019 ◽  
Author(s):  
Balajikarthick Subramanian ◽  
Justin Chun ◽  
Chandra Perez ◽  
Paul Yan ◽  
Isaac Stillman ◽  
...  

AbstractRegulation of the actin cytoskeleton is critical for normal glomerular podocyte structure and function. Altered regulation of the podocyte cytoskeleton can lead to proteinuria, reduced kidney filtration function and focal segmental glomerulosclerosis (FSGS). Mutations in inverted formin 2 (INF2), a member of the formin family of actin regulatory proteins, are the most common cause of autosomal dominant FSGS. INF2 is a multi-domain protein regulated by interaction between its N-terminal Diaphanous Inhibitory Domain (DID) and its C-terminal Diaphanous Auto-regulatory Domain (DAD). Although many aspects of the INF2 DID-DAD interaction are understood, it remains unclear why disease-causing mutations are restricted to the DID and how these mutations cause human disease. Here we report a proteolytic cleavage in INF2 that liberates the INF2 N-terminal DID to function independently of the INF2 C-terminal fragment containing the DAD domain. N-terminal DID region epitopes are differentially localized to podocyte foot process structures in normal glomeruli. This N-terminal fragment localization is lost in INF2-mediated FSGS, whereas INF2 C-terminal fragment epitopes localize to the podocyte cell body in both normal and disease conditions. INF2 cleavage is mediated by cathepsin proteases. In cultured podocytes, the wild-type INF2 N-terminal fragment localizes to membrane regions and promotes cell spreading, while these functions are impaired in a disease-associated INF2 mutant R218Q in the DID. These features are dependent on INF2-cleavage, with accompanying interaction of INF2 N-fragment with mDIA1. Our data suggest a unique cellular function of the DID dependent on INF2 cleavage and help explain the altered localization of FSGS-associated INF2 mutant polypeptides.


FEBS Letters ◽  
2013 ◽  
Vol 587 (13) ◽  
pp. 1997-2007 ◽  
Author(s):  
Boris A. Margulis ◽  
Vladimir Vigont ◽  
Vladimir F. Lazarev ◽  
Elena V. Kaznacheyeva ◽  
Irina V. Guzhova

2011 ◽  
Vol 192 (3) ◽  
pp. 447-462 ◽  
Author(s):  
Steven M. Claypool ◽  
Kevin Whited ◽  
Santi Srijumnong ◽  
Xianlin Han ◽  
Carla M. Koehler

Deficits in mitochondrial function result in many human diseases. The X-linked disease Barth syndrome (BTHS) is caused by mutations in the tafazzin gene TAZ1. Its product, Taz1p, participates in the metabolism of cardiolipin, the signature phospholipid of mitochondria. In this paper, a yeast BTHS mutant tafazzin panel is established, and 18 of the 21 tested BTHS missense mutations cannot functionally replace endogenous tafazzin. Four BTHS mutant tafazzins expressed at low levels are degraded by the intermembrane space AAA (i-AAA) protease, suggesting misfolding of the mutant polypeptides. Paradoxically, each of these mutant tafazzins assembles in normal protein complexes. Furthermore, in the absence of the i-AAA protease, increased expression and assembly of two of the BTHS mutants improve their function. However, the BTHS mutant complexes are extremely unstable and accumulate as insoluble aggregates when disassembled in the absence of the i-AAA protease. Thus, the loss of function for these BTHS mutants results from the inherent instability of the mutant tafazzin complexes.


2005 ◽  
Vol 79 (22) ◽  
pp. 14437-14441 ◽  
Author(s):  
Dolores González ◽  
Jose Francisco Rodríguez ◽  
Fernando Abaitua

ABSTRACT A search for dominant-negative mutant polypeptides hampering infectious bursal disease virus (IBDV) replication has been undertaken. We have found that expression of a mutant version of the VP3 structural polypeptide known as VP3/M3, partially lacking the domain responsible for the interaction with the virus-encoded RNA polymerase, efficiently interferes with the IBDV replication cycle. Transformed cells stably expressing VP3/M3 show a significant reduction (up to 96%) in their ability to support IBDV growth. Our findings provide a new tool for the characterization of the IBDV replication cycle and might facilitate the generation of genetically modified chicken lines with a reduced susceptibility to IBDV infection.


2002 ◽  
Vol 42 (supplement2) ◽  
pp. S85
Author(s):  
M. Aosaki ◽  
K. Matsushima ◽  
K. Tokuraku ◽  
S. Kotani

2000 ◽  
Vol 182 (17) ◽  
pp. 4882-4888 ◽  
Author(s):  
Rajeev Misra ◽  
Maria CastilloKeller ◽  
Ming Deng

ABSTRACT Replacement of OmpF's conserved carboxy-terminal phenylalanine with dissimilar amino acids severely impaired its assembly into stable trimers. In some instances, interactions of mutant proteins with the outer membrane were also affected, as judged by their hypersensitivity phenotype. Synthesis of all mutant OmpF proteins elevated the expression of periplasmic protease DegP, and synthesis of most of them made its presence obligatory for cell viability. These results showed a critical role for DegP in the event of aberrant outer membrane protein assembly. The lethal phenotype of mutant OmpF proteins in adegP null background was eliminated when a protease-deficient DegPS210A protein was overproduced. Our data showed that this rescue from lethality and a subsequent increase in mutant protein levels in the envelope did not lead to the proper assembly of the mutant proteins in the outer membrane. Rather, a detergent-soluble and thermolabile OmpF species resembling monomers accumulated in the mutants, and to a lesser extent in the parental strain, when DegPS210A was overproduced. Interestingly, this also led to the localization of a significant amount of mutant polypeptides to the inner membrane, where DegPS210A also fractionated. These results suggested that the DegPS210A-mediated rescue from toxicity involved preferential sequestration of misfolded OmpF monomers from the normal assembly pathway.


1999 ◽  
Vol 112 (22) ◽  
pp. 4041-4050 ◽  
Author(s):  
J. Matuliene ◽  
R. Essner ◽  
J. Ryu ◽  
Y. Hamaguchi ◽  
P.W. Baas ◽  
...  

CHO2 is a mammalian minus-end-directed kinesin-like motor protein present in interphase centrosomes/nuclei and mitotic spindle fibers/poles. Expression of HA- or GFP-tagged subfragments in transfected CHO cells revealed the presence of the nuclear localization site at the N-terminal tail. This domain becomes associated with spindle fibers during mitosis, indicating that the tail is capable of interaction with microtubules in vivo. While the central stalk diffusely distributes in the entire cytoplasm of cells, the motor domain co-localizes with microtubules throughout the cell cycle, which is eliminated by mutation of the ATP-binding consensus motif from GKT to AAA. Overexpression of the full-length CHO2 causes mitotic arrest and spindle abnormality. The effect of protein expression was first seen around the polar region where microtubule tended to be bundled together. A higher level of protein expression induces more elongated spindles which eventually become disorganized by loosing the structural integrity between microtubule bundles. Live cell observation demonstrated that GFP-labeled microtubule bundles underwent continuous changes in their relative position to one another through repeated attachment and detachment at one end; this results in the formation of irregular number of microtubule focal points in mitotic arrested cells. Thus the primary action of CHO2 appears to cross-link microtubules and move toward the minus-end direction to maintain association of the microtubule end at the pole. In contrast to the full-length of CHO2, overexpression of neither truncated nor mutant polypeptides resulted in significant effects on mitosis and mitotic spindles, suggesting that the function of CHO2 in mammalian cells may be redundant with other motor molecules during cell division.


Biochemistry ◽  
1997 ◽  
Vol 36 (12) ◽  
pp. 3671-3679 ◽  
Author(s):  
Christine M. Davis ◽  
Peggy L. Bustamante ◽  
John B. Todd ◽  
Pamela S. Parkes-Loach ◽  
Peter McGlynn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document