scholarly journals Drug Target Validation of the Protein Kinase AEK1, Essential for Proliferation, Host Cell Invasion, and Intracellular Replication of the Human Pathogen Trypanosoma cruzi

Author(s):  
Miguel A. Chiurillo ◽  
Bryan C. Jensen ◽  
Roberto Docampo

Chagas disease affects 6 to 7 million people in the Americas, and its treatment has been limited to drugs with relatively high toxicity and low efficacy in the chronic phase of the infection. New validated targets are needed to combat this disease. In this work, we report the chemical and genetic validation of the protein kinase AEK1, which is essential for cytokinesis and infectivity, using a novel gene editing strategy.

2010 ◽  
Vol 55 (4) ◽  
Author(s):  
Adriana Aguado-Martínez ◽  
Gema Álvarez-García ◽  
Gereon Schares ◽  
Verónica Risco-Castillo ◽  
Aurora Fernández-García ◽  
...  

AbstractNeospora caninum negatively impacts bovine reproductive performance around the world. Addressing this problem requires a greater understanding of the parasite’s molecular biology. In this study, monoclonal antibodies against recombinant proteins were successfully developed and employed to characterise two different proteins of N. caninum: the acute phase-associated NcGRA7 and the chronic phase-associated NcSAG4. Immunofluorescence with the anti-rNcGRA7 monoclonal antibody suggested that NcGRA7 trafficks from tachyzoite dense granules to the matrix of the parasitophorous vacuole and parasite’s surroundings. Furthermore, NcGRA7 is also expressed in the bradyzoite stage and localised on the matrix of bradyzoite-positive vacuoles. NcGRA7 appears to be partially involved in the tachyzoite-invasion mechanisms, as an anti-rNcGRA7 monoclonal antibody partially inhibited in vitro tachyzoite-invasion. A monoclonal antibody specific for NcSAG4 confirmed this protein’s bradyzoitespecific expression both by western blot and immunofluorescence. However, some bradyzoite-positive vacuoles only weakly expressed NcSAG4, if it was expressed at all. The specificity of the anti-rNcSAG4 monoclonal antibody was confirmed by the recognition of the NcSAG4 in the membrane surface of Nc-1SAG4c transgenic tachyzoites, which constitutively expresses NcSAG4. Blocking NcSAG4 of Nc-1SAG4c tachyzoites with the monoclonal antibody did not affect host cell invasion. However, its implication on the host cell adhesion or host immune evasion should not be discarded.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Mary-Louise Wilde ◽  
Tony Triglia ◽  
Danushka Marapana ◽  
Jennifer K. Thompson ◽  
Alexei A. Kouzmitchev ◽  
...  

ABSTRACT Understanding the mechanisms behind host cell invasion by Plasmodium falciparum remains a major hurdle to developing antimalarial therapeutics that target the asexual cycle and the symptomatic stage of malaria. Host cell entry is enabled by a multitude of precisely timed and tightly regulated receptor-ligand interactions. Cyclic nucleotide signaling has been implicated in regulating parasite invasion, and an important downstream effector of the cAMP-signaling pathway is protein kinase A (PKA), a cAMP-dependent protein kinase. There is increasing evidence that P. falciparum PKA (PfPKA) is responsible for phosphorylation of the cytoplasmic domain of P. falciparum apical membrane antigen 1 (PfAMA1) at Ser610, a cAMP-dependent event that is crucial for successful parasite invasion. In the present study, CRISPR-Cas9 and conditional gene deletion (dimerizable cre) technologies were implemented to generate a P. falciparum parasite line in which expression of the catalytic subunit of PfPKA (PfPKAc) is under conditional control, demonstrating highly efficient dimerizable Cre recombinase (DiCre)-mediated gene excision and complete knockdown of protein expression. Parasites lacking PfPKAc show severely reduced growth after one intraerythrocytic growth cycle and are deficient in host cell invasion, as highlighted by live-imaging experiments. Furthermore, PfPKAc-deficient parasites are unable to phosphorylate PfAMA1 at Ser610. This work not only identifies an essential role for PfPKAc in the P. falciparum asexual life cycle but also confirms that PfPKAc is the kinase responsible for phosphorylating PfAMA1 Ser610. IMPORTANCE Malaria continues to present a major global health burden, particularly in low-resource countries. Plasmodium falciparum, the parasite responsible for the most severe form of malaria, causes disease through rapid and repeated rounds of invasion and replication within red blood cells. Invasion into red blood cells is essential for P. falciparum survival, and the molecular events mediating this process have gained much attention as potential therapeutic targets. With no effective vaccine available, and with the emergence of resistance to antimalarials, there is an urgent need for the development of new therapeutics. Our research has used genetic techniques to provide evidence of an essential protein kinase involved in P. falciparum invasion. Our work adds to the current understanding of parasite signaling processes required for invasion, highlighting PKA as a potential drug target to inhibit invasion for the treatment of malaria.


2004 ◽  
Vol 3 (3) ◽  
pp. 117-122 ◽  
Author(s):  
Eric G Marcusson ◽  
Thomas M Vincent ◽  
Kumar L Hari ◽  
MingYi Chiang ◽  
Nicholas M Dean

2015 ◽  
Vol 9 (5) ◽  
pp. e0003801 ◽  
Author(s):  
Alessandra Guidi ◽  
Nuha R. Mansour ◽  
Ross A. Paveley ◽  
Ian M. Carruthers ◽  
Jérémy Besnard ◽  
...  

2017 ◽  
Vol 18 (9) ◽  
Author(s):  
Kamila A. Meissner ◽  
Sergey Lunev ◽  
Yuan-Ze Wang ◽  
Marleen Linzke ◽  
Fernando de Assis Batista ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Dorothée Diogo ◽  
Chao Tian ◽  
Christopher S. Franklin ◽  
Mervi Alanne-Kinnunen ◽  
Michael March ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document