THE BALLET OF INDIAN PLATE DURING THE ASSEMBLY AND BREAKUP OF THE PROTEROZOIC SUPERCONTINENTS

2017 ◽  
Author(s):  
Sankar Chatterjee ◽  
◽  
Christopher R. Scotese
Keyword(s):  
Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 573
Author(s):  
Shahid Iqbal ◽  
Michael Wagreich ◽  
Mehwish Bibi ◽  
Irfan U. Jan ◽  
Susanne Gier

The Salt Range, in Pakistan, preserves an insightful sedimentary record of passive margin dynamics along the NW margin of the Indian Plate during the Mesozoic. This study develops provenance analyses of the Upper Triassic (Kingriali Formation) to Lower Jurassic (Datta Formation) siliciclastics from the Salt and Trans Indus ranges based on outcrop analysis, petrography, bulk sediment elemental geochemistry, and heavy-mineral data. The sandstones are texturally and compositionally mature quartz arenites and the conglomerates are quartz rich oligomictic conglomerates. Geochemical proxies support sediment derivation from acidic sources and deposition under a passive margin setting. The transparent heavy mineral suite consists of zircon, tourmaline, and rutile (ZTR) with minor staurolite in the Triassic strata that diminishes in the Jurassic strata. Together, these data indicate that the sediments were supplied by erosion of the older siliciclastics of the eastern Salt Range and adjoining areas of the Indian Plate. The proportion of recycled component exceeds the previous literature estimates for direct sediment derivation from the Indian Shield. A possible increase in detritus supply from the Salt Range itself indicates notably different conditions of sediment generation, during the Triassic–Jurassic transition. The present results suggest that, during the Triassic–Jurassic transition in the Salt Range, direct sediment supply from the Indian Shield was probably reduced and the Triassic and older siliciclastics were exhumed on an elevated passive margin and reworked by a locally established fluvio-deltaic system. The sediment transport had a north-northwestward trend parallel to the northwestern Tethyan margin of the Indian Plate and normal to its opening axis. During the Late Triassic, hot and arid hot-house palaeoclimate prevailed in the area that gave way to a hot and humid greenhouse palaeoclimate across the Triassic–Jurassic Boundary. Sedimentological similarity between the Salt Range succession and the Neo-Tethyan succession exposed to the east on the northern Indian passive Neo-Tethyan margin suggests a possible westward extension of this margin.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaochun Wang ◽  
Hans Thybo ◽  
Irina M. Artemieva

AbstractAll models of the magmatic and plate tectonic processes that create continental crust predict the presence of a mafic lower crust. Earlier proposed crustal doubling in Tibet and the Himalayas by underthrusting of the Indian plate requires the presence of a mafic layer with high seismic P-wave velocity (Vp > 7.0 km/s) above the Moho. Our new seismic data demonstrates that some of the thickest crust on Earth in the middle Lhasa Terrane has exceptionally low velocity (Vp < 6.7 km/s) throughout the whole 80 km thick crust. Observed deep crustal earthquakes throughout the crustal column and thick lithosphere from seismic tomography imply low temperature crust. Therefore, the whole crust must consist of felsic rocks as any mafic layer would have high velocity unless the temperature of the crust were high. Our results form basis for alternative models for the formation of extremely thick juvenile crust with predominantly felsic composition in continental collision zones.


2021 ◽  
pp. 1-27
Author(s):  
Aranya Sen ◽  
Koushik Sen ◽  
Amitava Chatterjee ◽  
Shubham Choudhary ◽  
Alosree Dey

Abstract The Himalaya is characterized by the presence of both pre-Himalayan Palaeozoic and syn-Himalayan Cenozoic granitic bodies, which can help unravel the pre- to syn-collisional geodynamics of this orogen. In the Bhagirathi Valley of Western Himalaya, such granites and the Tethyan Himalayan Sequence (THS) hosting them are bound to the south by the top-to-the-N extensional Jhala Normal Fault (JNF) and low-grade metapelite of the THS to its north. The THS is intruded by a set of leucocratic dykes concordant to the JNF. Zircon U–Pb laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) geochronology of the THS and one leucocratic dyke reveals that the two rocks have a strikingly similar age distribution, with a common and most prominent age peak at ~1000 Ma. To the north of the THS lies Bhaironghati Granite, a Palaeozoic two-mica granite, which shows a crystallization age of 512.28 ± 1.58 Ma. Our geochemical analysis indicates that it is a product of pre-Himalayan Palaeozoic magmatism owing to extensional tectonics in a back-arc or rift setting following the assembly of Gondwana (500–530 Ma). The Cenozoic Gangotri Leucogranite lies to the north of Bhaironghati Granite, and U–Pb dating of zircon from this leucogranite gives a crystallization age of 21.73 ± 0.11 Ma. Our geochemical studies suggest that the Gangotri Leucogranite is a product of muscovite-dehydration melting of the lower crust owing to flexural bending in relation to steepening of the subducted Indian plate. The leucocratic dykes are highly refracted parts of the Gangotri Leucogranite that migrated and emplaced along extensional fault zones related to the JNF and scavenged zircon from the host THS during crystallization.


2018 ◽  
Vol 32 (6) ◽  
pp. 1316 ◽  
Author(s):  
Jahnavi Joshi ◽  
Gregory D. Edgecombe

Integrative taxonomy assesses the congruence between different lines of evidence for delimiting species, such as morphological, molecular or ecological data. Herein molecular phylogenetics is used to test monophyly and determine the phylogenetic position of the Old World tropical centipede genus Ethmostigmus Pocock, 1898, and to define species boundaries for Ethmostigmus in peninsular India. A phylogeny of the family Scolopendridae based on DNA sequence data for three markers from 427 specimens sampling in all major lineages (144 individuals generated in this study) recovers Ethmostigmus as a monophyletic group, but relationships among the genera in its subfamily Otostigminae are poorly supported. Two species delimitation methods for DNA sequence data and phylogeny are integrated with morphology and geographic data to propose a well-supported species hypothesis for Ethmostigmus on the peninsular Indian plate. Five species of Ethmostigmus are recognised in peninsular India, of which E. coonooranus Chamberlin, 1920 and three new species, namely, E. agasthyamalaiensis, sp. nov., E. sahyadrensis, sp. nov. and E. praveeni, sp. nov., occur in the Western Ghats, a biodiversity hotspot. The lesser-known Eastern Ghats harbour one species, E. tristis (Meinert, 1886), which has been nearly unreported for 130 years. This study highlights the value of an integrative approach to systematics, especially in underexplored, high biodiversity regions and where morphological variation is limited among closely related species.


Sign in / Sign up

Export Citation Format

Share Document