EVALUATION OF METHODS TO MEASURE IN SITU CONTACT ANGLES OF SUPERCRITICAL CO2 AND BRINE IN SANDSTONE CORES USING MICRO-CT IMAGING

2017 ◽  
Author(s):  
Dustin Crandall ◽  
◽  
Laura E. Dalton ◽  
Angela Goodman ◽  
Seth King
Author(s):  
Yuejian Lu ◽  
Dameng Liu ◽  
Yidong Cai ◽  
Qian Li ◽  
Yingfang Zhou

2018 ◽  
Vol 37 (6) ◽  
pp. 462-467 ◽  
Author(s):  
G. C. Kalogerakis ◽  
Q. Zhao ◽  
G. Grasselli ◽  
B. E. Sleep

In Canada alone, petroleum hydrocarbons have been found in groundwater and soil at approximately 1400 and 4000 sites, respectively. In situ chemical oxidation (ISCO) is a remediation technology that delivers oxidants to the subsurface to mineralize the contaminants. A typical oxidant is permanganate, which generates carbon dioxide (CO2) as gas and manganese oxides (MnO2) as precipitates. In this study, microcomputed tomography (micro-CT) imaging has been used successfully to visualize the oxidation of diesel fuel with permanganate in a 1D column packed with silica sand with respect to time (4D imaging). The byproducts of diesel fuel oxidation with permanganate have been visualized with micro-CT image analysis and subsequently qualitatively and quantitatively assessed via image processing. This is the first study to visualize the distribution of the byproducts in the pores in a noninvasive manner and to quantify both the gaseous CO2 and MnO2. Flushing water through the sample to remove the byproducts was also investigated. Imaging results showed a reduction of the gas phase by approximately 6% from water flushing, but the MnO2 deposits were not removed. CO2 and MnO2 generation from permanganate addition for contaminant remediation may result in preferential pathways, and potential permanganate bypassing of the target treatment zone may occur, reducing the efficiency of the remediation process. Using 4D micro-CT imaging offers an opportunity to further elucidate the fundamental understanding of all underlying processes and potentially help in improving the design of ISCO schemes.


2021 ◽  
Author(s):  
P. Bakhshi ◽  
S. Ghanaatian ◽  
O. Shahrokhi ◽  
S. Garcia ◽  
M.M. Maroto-Valer

2021 ◽  
Vol 27 (S1) ◽  
pp. 2944-2945
Author(s):  
Jan Dewanckele ◽  
Frederik Coppens ◽  
Wesley De Boever ◽  
Marijn Boone ◽  
Luke Hunter
Keyword(s):  
Micro Ct ◽  

2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Daisy (Jihyung) Ko ◽  
Tess Kelly ◽  
Lacey Thompson ◽  
Jasmene K. Uppal ◽  
Nasim Rostampour ◽  
...  

For humans and other mammals to eat effectively, teeth must develop properly inside the jaw. Deciphering craniodental integration is central to explaining the timely formation of permanent molars, including third molars which are often impacted in humans, and to clarifying how teeth and jaws fit, function and evolve together. A factor long-posited to influence molar onset time is the jaw space available for each molar organ to form within. Here, we tested whether each successive molar initiates only after a minimum threshold of space is created via jaw growth. We used synchrotron-based micro-CT scanning to assess developing molars in situ within jaws of C57BL/6J mice aged E10 to P32, encompassing molar onset to emergence. We compared total jaw, retromolar and molar lengths, and molar onset times, between upper and lower jaws. Initiation time and developmental duration were comparable between molar upper and lower counterparts despite shorter, slower-growing retromolar space in the upper jaw, and despite size differences between upper and lower molars. Timing of molar formation appears unmoved by jaw length including space. Conditions within the dental lamina likely influence molar onset much more than surrounding jaw tissues. We theorize that molar initiation is contingent on sufficient surface area for the physical reorganization of dental epithelium and its invagination of underlying mesenchyme.


Author(s):  
Sebastian Halm ◽  
David Haberthür ◽  
Elisabeth Eppler ◽  
Valentin Djonov ◽  
Andreas Arnold

Abstract Introduction This pilot study explores whether a human Thiel-embalmed temporal bone is suitable for generating an accurate and complete data set with micro-computed tomography (micro-CT) and whether solid iodine-staining improves visualization and facilitates segmentation of middle ear structures. Methods A temporal bone was used to verify the accuracy of the imaging by first digitally measuring the stapes on the tomography images and then physically under the microscope after removal from the temporal bone. All measurements were compared with literature values. The contralateral temporal bone was used to evaluate segmentation and three-dimensional (3D) modeling after iodine staining and micro-CT scanning. Results The digital and physical stapes measurements differed by 0.01–0.17 mm or 1–19%, respectively, but correlated well with the literature values. Soft tissue structures were visible in the unstained scan. However, iodine staining increased the contrast-to-noise ratio by a factor of 3.7 on average. The 3D model depicts all ossicles and soft tissue structures in detail, including the chorda tympani, which was not visible in the unstained scan. Conclusions Micro-CT imaging of a Thiel-embalmed temporal bone accurately represented the entire anatomy. Iodine staining considerably increased the contrast of soft tissues, simplified segmentation and enabled detailed 3D modeling of the middle ear.


JOM ◽  
2021 ◽  
Author(s):  
Yichun Tang ◽  
Kangning Su ◽  
Ruyi Man ◽  
Michael C. Hillman ◽  
Jing Du

2013 ◽  
Vol 35 (12) ◽  
pp. 1793-1800 ◽  
Author(s):  
D. Sreenivasan ◽  
M. Watson ◽  
K. Callon ◽  
M. Dray ◽  
R. Das ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document