scholarly journals Timing of Mouse Molar Formation Is Independent of Jaw Length Including Retromolar Space

2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Daisy (Jihyung) Ko ◽  
Tess Kelly ◽  
Lacey Thompson ◽  
Jasmene K. Uppal ◽  
Nasim Rostampour ◽  
...  

For humans and other mammals to eat effectively, teeth must develop properly inside the jaw. Deciphering craniodental integration is central to explaining the timely formation of permanent molars, including third molars which are often impacted in humans, and to clarifying how teeth and jaws fit, function and evolve together. A factor long-posited to influence molar onset time is the jaw space available for each molar organ to form within. Here, we tested whether each successive molar initiates only after a minimum threshold of space is created via jaw growth. We used synchrotron-based micro-CT scanning to assess developing molars in situ within jaws of C57BL/6J mice aged E10 to P32, encompassing molar onset to emergence. We compared total jaw, retromolar and molar lengths, and molar onset times, between upper and lower jaws. Initiation time and developmental duration were comparable between molar upper and lower counterparts despite shorter, slower-growing retromolar space in the upper jaw, and despite size differences between upper and lower molars. Timing of molar formation appears unmoved by jaw length including space. Conditions within the dental lamina likely influence molar onset much more than surrounding jaw tissues. We theorize that molar initiation is contingent on sufficient surface area for the physical reorganization of dental epithelium and its invagination of underlying mesenchyme.

2015 ◽  
Vol 282 (1816) ◽  
pp. 20151628 ◽  
Author(s):  
Moya Meredith Smith ◽  
Alex Riley ◽  
Gareth J. Fraser ◽  
Charlie Underwood ◽  
Monique Welten ◽  
...  

In classical theory, teeth of vertebrate dentitions evolved from co-option of external skin denticles into the oral cavity. This hypothesis predicts that ordered tooth arrangement and regulated replacement in the oral dentition were also derived from skin denticles. The fossil batoid ray Schizorhiza stromeri (Chondrichthyes; Cretaceous) provides a test of this theory. Schizorhiza preserves an extended cartilaginous rostrum with closely spaced, alternating saw-teeth, different from sawfish and sawsharks today. Multiple replacement teeth reveal unique new data from micro-CT scanning, showing how the ‘cone-in-cone’ series of ordered saw-teeth sets arrange themselves developmentally, to become enclosed by the roots of pre-existing saw-teeth. At the rostrum tip, newly developing saw-teeth are present, as mineralized crown tips within a vascular, cartilaginous furrow; these reorient via two 90° rotations then relocate laterally between previously formed roots. Saw-tooth replacement slows mid-rostrum where fewer saw-teeth are regenerated. These exceptional developmental data reveal regulated order for serial self-renewal, maintaining the saw edge with ever-increasing saw-tooth size. This mimics tooth replacement in chondrichthyans, but differs in the crown reorientation and their enclosure directly between roots of predecessor saw-teeth. Schizorhiza saw-tooth development is decoupled from the jaw teeth and their replacement, dependent on a dental lamina. This highly specialized rostral saw, derived from diversification of skin denticles, is distinct from the dentition and demonstrates the potential developmental plasticity of skin denticles.


2018 ◽  
Vol 58 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Steven R. Manchester ◽  
David L. Dilcher ◽  
Walter S. Judd ◽  
Brandon Corder ◽  
James F. Basinger

AbstractAn extinct plant that populated the eastern margin of the Cretaceous Midcontinental Seaway of North America about 100 million years ago has attracted interest as one of the earliest known bisexual flowers in the fossil record. Reexamination of the type specimen of Carpites cordiformis Lesq., and corresponding specimens from sandstones and clays of the Dakota Formation of Kansas and Nebraska and the correlative Woodbine Sandstone of Texas, with both light microscopy and micro CT scanning, leads to a revised concept of the morphology and affinities of the “Rose Creek flower”. The moderately large flowers (22–30 mm diameter) have two perianth whorls: five basally fused sepals and five free spatulate petals. The gynoecium is pentacarpellate with five styles. A crescent-shaped nectariferous pad occurs at the base of the gynoecium aligned with each sepal. Ten stamens are inserted at the level of the nectaries, one whorl organized opposite the sepals and another opposite the petals. In situ pollen is oblate, brevitricolporate and finely verrucate. The fruits are loculicidal capsules with persistent calyx and disk. Comparing the full suite of observed characters with those of extant angiosperms indicates particularly close similarity to the monogeneric fabalean family Quillajaceae, with shared features of perianth number and morphology, nectary position and morphology, stamen number and morphology, and gynoecium merosity, although the fossil differs from extant Quillaja in fruit type (capsule vs basally syncarpous follicles) and especially in pollen morphology (10 μm oblate, microverrucate, vs 30–40 μm prolate, striate).


2013 ◽  
Vol 82 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Ana Ivanović ◽  
Gregor Aljančič ◽  
Jan W. Arntzen

We performed an exploratory analysis of the morphology of the cranium in the white olm (Proteus anguinus anguinus) and the black olm (P. a. parkelj) with micro-CT scanning and geometric morphometrics. The mudpuppy (Necturus maculosus) was used as an outgroup. The black olm falls outside the white olm morphospace by a markedly wider skull, shorter vomers which are positioned further apart and by laterally positioned squamosals and quadrates relative to the palate (the shape of the buccal cavity). On account of its robust skull with more developed premaxillae a shorter otico-occipital region, the black olm is positioned closer to Necturus than are the studied specimens of the white olm. The elongated skull of the white olm, with an anteriorly positioned jaw articulation point, could be regarded as an adaptation for improved feeding success, possibly compensating for lack of vision. As yet, the alternative explanations on the evolution of troglomorphism in Proteus are an extensive convergence in white olms versus the reverse evolution towards less troglomorphic character states in the black olm. To further understand the evolutionary trajectories within Proteus we highlight the following hypotheses for future testing: i) morphological differentiation is smaller within than between genetically differentiated white olm lineages, and ii) ontogenetic shape changes are congruent with the shape changes between lineages. We anticipate that the morphological detail and analytical power that come with the techniques we here employed will assist us in this task.


2021 ◽  
Vol 27 (S1) ◽  
pp. 2944-2945
Author(s):  
Jan Dewanckele ◽  
Frederik Coppens ◽  
Wesley De Boever ◽  
Marijn Boone ◽  
Luke Hunter
Keyword(s):  
Micro Ct ◽  

2021 ◽  
Vol 11 (11) ◽  
pp. 5086
Author(s):  
Mazen F. Alkahtany ◽  
Saqib Ali ◽  
Abdul Khabeer ◽  
Shafqat A. Shah ◽  
Khalid H. Almadi ◽  
...  

This study aimed to investigate variations in the root canal morphology of maxillary second premolar (MSP) teeth using microcomputed tomography (micro-CT). Sixty (N = 60) human extracted MSPs were collected and prepared for micro-CT scanning. The duration for scanning a single sample ranged between 30 and 40 min and a three-dimensional (3-D) image was obtained for all the MSPs. The images were evaluated by a single observer who recorded the canal morphology type, number of roots, canal orifices, apical foramina(s), apical delta(s), and accessory canals. The root canal configuration was categorized in agreement with Vertucci’s classification, and any configuration not in agreement with Vertucci’s classification was reported as an “additional canal configuration”. Descriptive statistics (such as mean percentages) were calculated using SPSS software. The most common types agreeing with Vertucci’s classification (in order of highest to lowest incidence) were types I, III, V, VII, II, and VI. The teeth also exhibited four additional configurations that were different from Vertucci’s classification: types 2-3, 1-2-3, 2-1-2-1, and 1-2-1-3. A single root was found in 96.7% and the majority of the samples demonstrated two canals (73.3%). Further, 80% of the teeth showed one canal orifice. The number of apical foramina’s in the teeth was variable, with 56.7% having solitary apical foramen. The accessory canal was found in 33.3%, and apical delta was found in only 20% of the samples. Variable morphology of the MSPs was detected in our study. The canal configuration most prevalent was type 1; however, the results also revealed some additional canal types.


JOM ◽  
2021 ◽  
Author(s):  
Yichun Tang ◽  
Kangning Su ◽  
Ruyi Man ◽  
Michael C. Hillman ◽  
Jing Du

2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


Sign in / Sign up

Export Citation Format

Share Document