In situ chemical oxidation processes: 4D quantitative visualization of byproduct formation and deposition via micro-CT imaging

2018 ◽  
Vol 37 (6) ◽  
pp. 462-467 ◽  
Author(s):  
G. C. Kalogerakis ◽  
Q. Zhao ◽  
G. Grasselli ◽  
B. E. Sleep

In Canada alone, petroleum hydrocarbons have been found in groundwater and soil at approximately 1400 and 4000 sites, respectively. In situ chemical oxidation (ISCO) is a remediation technology that delivers oxidants to the subsurface to mineralize the contaminants. A typical oxidant is permanganate, which generates carbon dioxide (CO2) as gas and manganese oxides (MnO2) as precipitates. In this study, microcomputed tomography (micro-CT) imaging has been used successfully to visualize the oxidation of diesel fuel with permanganate in a 1D column packed with silica sand with respect to time (4D imaging). The byproducts of diesel fuel oxidation with permanganate have been visualized with micro-CT image analysis and subsequently qualitatively and quantitatively assessed via image processing. This is the first study to visualize the distribution of the byproducts in the pores in a noninvasive manner and to quantify both the gaseous CO2 and MnO2. Flushing water through the sample to remove the byproducts was also investigated. Imaging results showed a reduction of the gas phase by approximately 6% from water flushing, but the MnO2 deposits were not removed. CO2 and MnO2 generation from permanganate addition for contaminant remediation may result in preferential pathways, and potential permanganate bypassing of the target treatment zone may occur, reducing the efficiency of the remediation process. Using 4D micro-CT imaging offers an opportunity to further elucidate the fundamental understanding of all underlying processes and potentially help in improving the design of ISCO schemes.

Author(s):  
Huchuan Yan ◽  
Cui Lai ◽  
Dongbo Wang ◽  
Shiyu Liu ◽  
Xiaopei Li ◽  
...  

Refractory organic pollutants in wastewater have the characteristics of persistence and toxicity, which seriously threaten the health and safety of humans and other organisms. Many researchers have committed to developing...


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4237-4246
Author(s):  
Tian Xie ◽  
Zhi Dang ◽  
Jian Zhang ◽  
Qian Zhang ◽  
Rong-Hai Zhang ◽  
...  

The combination of pump-and-treat and in situ chemical oxidation processes can effectively accelerate the remediation of DNAPL pollutant in groundwater.


2017 ◽  
Vol 24 (12) ◽  
pp. 11265-11278 ◽  
Author(s):  
Bérénice Ranc ◽  
Pierre Faure ◽  
Véronique Croze ◽  
Catherine Lorgeoux ◽  
Marie-Odile Simonnot

Sign in / Sign up

Export Citation Format

Share Document