Pore-Scale Study of the Residual Trapping of Air in a Doddington Sandstone Using In-Situ Micro-CT Imaging

Author(s):  
P. Bakhshi ◽  
S. Ghanaatian ◽  
O. Shahrokhi ◽  
S. Garcia ◽  
M.M. Maroto-Valer
2017 ◽  
Vol 114 ◽  
pp. 4872-4878 ◽  
Author(s):  
Charlotte Garing ◽  
Marco Voltolini ◽  
Jonathan B. Ajo-Franklin ◽  
Sally M. Benson

Author(s):  
Yuejian Lu ◽  
Dameng Liu ◽  
Yidong Cai ◽  
Qian Li ◽  
Yingfang Zhou

2012 ◽  
Vol 23 ◽  
pp. 521-526 ◽  
Author(s):  
A. Georgiadis ◽  
S. Berg ◽  
G. Maitland ◽  
H. Ott

2018 ◽  
Vol 37 (6) ◽  
pp. 462-467 ◽  
Author(s):  
G. C. Kalogerakis ◽  
Q. Zhao ◽  
G. Grasselli ◽  
B. E. Sleep

In Canada alone, petroleum hydrocarbons have been found in groundwater and soil at approximately 1400 and 4000 sites, respectively. In situ chemical oxidation (ISCO) is a remediation technology that delivers oxidants to the subsurface to mineralize the contaminants. A typical oxidant is permanganate, which generates carbon dioxide (CO2) as gas and manganese oxides (MnO2) as precipitates. In this study, microcomputed tomography (micro-CT) imaging has been used successfully to visualize the oxidation of diesel fuel with permanganate in a 1D column packed with silica sand with respect to time (4D imaging). The byproducts of diesel fuel oxidation with permanganate have been visualized with micro-CT image analysis and subsequently qualitatively and quantitatively assessed via image processing. This is the first study to visualize the distribution of the byproducts in the pores in a noninvasive manner and to quantify both the gaseous CO2 and MnO2. Flushing water through the sample to remove the byproducts was also investigated. Imaging results showed a reduction of the gas phase by approximately 6% from water flushing, but the MnO2 deposits were not removed. CO2 and MnO2 generation from permanganate addition for contaminant remediation may result in preferential pathways, and potential permanganate bypassing of the target treatment zone may occur, reducing the efficiency of the remediation process. Using 4D micro-CT imaging offers an opportunity to further elucidate the fundamental understanding of all underlying processes and potentially help in improving the design of ISCO schemes.


2019 ◽  
Author(s):  
Peleg Haruzi ◽  
Regina Katsman ◽  
Baruch Spiro ◽  
Matthias Halisch ◽  
Nicolas Waldmann

Abstract. In this study petrophysical characteristics of three consecutive sandstone layers of the Lower Cretaceous Hatira Formation from northern Israel were comprehensively investigated and analysed. The methods used were: experimental petrographic and petrophysical methods, 3D micro-CT imaging and pore-scale single-phase flow modelling, conducted in parallel. All three studied sandstone layers show features indicative of high textural and mineralogical maturity in agreement with those reported from the Kurnub Group in other localities in the Levant. The occurrence of cross-bedding in layers enriched in silt and clay, between the quartz arenite rich beds, may suggest a deposition in a fluvial environment. A higher degree of Fe-ox cementation was observed in the top layer contrasting with a low extent of Fe-ox cementation in the bottom layer. Both quartz-arenite layers are located above and below the intermediate 20 cm thick least permeable quartz wacke sandstone layer. The latter presumably prevented the supply of the iron-rich meteoric water to the bottom layer. Evaluated micro-scale geometrical rocks properties (pore size distribution, pore throat size, characteristic (pore-throat) length, pore throat length of maximal conductance, specific surface area, grain roughness) and macro-scale petrophysical properties (porosity and tortuosity) predetermined the permeability of the studied layers. Large-scale laboratory porosity and permeability measurements show low variability in the quartz arenite (top and bottom) layers, and high variability in the quartz wacke (intermediate) layer. These degrees of variability are confirmed also by anisotropy and homogeneity analyses conducted in the μCT-imaged geometry. Qualitative evaluation of anisotropy (based on statistical distribution of pore space) and connectivity (using Euler Characteristic) were correlated with mineralogy and grain surface characteristics, clay matrix and preferential location of cementation. Two scales of porosity variations were found with variogram analysis of the upper quartz arenite layer: fluctuations at 300 μm scale due to pores size variability, and at 2 mm scale due to the appearance of high and low porosity occlusion by ferruginous bands showing iron oxide cementation. We suggest that this cementation is a result of iron solutes transported by infiltrating water through preferential permeable paths in zones having large grains and pores. Fe-ox precipitated as a result of reaction with oxygen in a partly-saturating realm at the large surface area localities adjacent to the preferential conducting paths. The core part of the study is the investigation of macroscopic permeability, upscaled from pore-scale velocity field, simulated by free-flow in real μCT-scanned geometry on mm-scale sample. The results show an agreement with lab petrophysical estimates on cm-scale sample for the top and bottom layers. Estimated permeability anisotropy correlates with the presence of beddings with 2 mm scale variability in the top layer. The results show that this kind of anisotropy rather than a variability at the pore-scale controls the macroscopic rock permeability. Therefore, we suggest that in order to upscale reliably to the lab permeability, a sufficiently large modelling domain is required to capture the textural features that appear at a scale larger than the pore scale. We also discuss imaging and modelling practices able to preserve the characteristics of the pore network during the entire computational workflow procedure, applicable to studies in the fields of hydrology, petroleum geology, or sedimentary ore deposits.


2021 ◽  
Vol 27 (S1) ◽  
pp. 2944-2945
Author(s):  
Jan Dewanckele ◽  
Frederik Coppens ◽  
Wesley De Boever ◽  
Marijn Boone ◽  
Luke Hunter
Keyword(s):  
Micro Ct ◽  

2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Daisy (Jihyung) Ko ◽  
Tess Kelly ◽  
Lacey Thompson ◽  
Jasmene K. Uppal ◽  
Nasim Rostampour ◽  
...  

For humans and other mammals to eat effectively, teeth must develop properly inside the jaw. Deciphering craniodental integration is central to explaining the timely formation of permanent molars, including third molars which are often impacted in humans, and to clarifying how teeth and jaws fit, function and evolve together. A factor long-posited to influence molar onset time is the jaw space available for each molar organ to form within. Here, we tested whether each successive molar initiates only after a minimum threshold of space is created via jaw growth. We used synchrotron-based micro-CT scanning to assess developing molars in situ within jaws of C57BL/6J mice aged E10 to P32, encompassing molar onset to emergence. We compared total jaw, retromolar and molar lengths, and molar onset times, between upper and lower jaws. Initiation time and developmental duration were comparable between molar upper and lower counterparts despite shorter, slower-growing retromolar space in the upper jaw, and despite size differences between upper and lower molars. Timing of molar formation appears unmoved by jaw length including space. Conditions within the dental lamina likely influence molar onset much more than surrounding jaw tissues. We theorize that molar initiation is contingent on sufficient surface area for the physical reorganization of dental epithelium and its invagination of underlying mesenchyme.


Sign in / Sign up

Export Citation Format

Share Document