A GEOCHEMICAL MIXING MODEL APPROACH TO ATTRIBUTING SEDIMENT SOURCES FROM FOUR LAKES IN YUNNAN, CHINA AND CONNECTIONS TO HYDROLOGIC BALANCE

2019 ◽  
Author(s):  
John Goodin ◽  
◽  
Aubrey L. Hillman ◽  
Daniel J. Bain ◽  
Mark Abbott ◽  
...  
2021 ◽  
Author(s):  
Peng Shi ◽  
Yang Yu ◽  
Lulu Bai ◽  
Peng Li

<p>Fingerprint identification technology has been widely used to extract sediment source proportions, but the only indicator currently available to assess the accuracy and applicability of the results is good-fit (GOF). We have proposed a new method to evaluate sediment source results and quantitatively evaluate the applicability of sediment source mixing models. A typical check dam in the Loess Plateau was used to evaluate the new method by combining field sampling and numerical simulations. Collins (C) and modified Hughes mixing (M-H) models were used to quantitatively analyze the sediment sources of the check dams built and operated until July 2017. The results showed that the best combination for the fingerprint factors in the dam-controlled watershed, was Zn, Mg, Mn, and d (0,1), which had an 86.1% identification ability. With rainfall, the relative sediment contribution rates from gullies, sloping farmland, grasslands, and branch ditches were 54.22%, 23.56%, 15.54%, and 6.68%, respectively. The M-H mixing model had a higher comprehensive score (2.72) when compared with the C mixing model (2.54). The comprehensive evaluation method could provide an effective scientific theoretical basis for optimal allocations of water and soil conservation in small watersheds.</p>


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0176065 ◽  
Author(s):  
Yadira Chinique de Armas ◽  
Mirjana Roksandic ◽  
Dejana Nikitović ◽  
Roberto Rodríguez Suárez ◽  
David Smith ◽  
...  

2015 ◽  
Vol 15 (10) ◽  
pp. 2067-2085 ◽  
Author(s):  
Leticia Palazón ◽  
Leticia Gaspar ◽  
Borja Latorre ◽  
William H. Blake ◽  
Ana Navas

2020 ◽  
Vol 35 (12) ◽  
Author(s):  
Carolien M. H. Weijst ◽  
Josse Winkelhorst ◽  
Lucas Lourens ◽  
Maureen E. Raymo ◽  
Francesca Sangiorgi ◽  
...  

1997 ◽  
Vol 1 (3) ◽  
pp. 509-521 ◽  
Author(s):  
A. L. Collins ◽  
D. E. Walling ◽  
G. J. L. Leeks

Abstract. Suspended sediment sources in the Upper Severn catchment are quantified using a composite fingerprinting technique combining statistically-verified signatures with a multivariate mixing model. Composite fingerprints are developed from a suite of diagnostic properties comprising trace metal (Fe, Mn, AI), heavy metal (Cu, Zn, Pb, Cr, Co, Ni), base cation (Na, Mg, Ca, K), organic (C, N), radiometric (137Cs, 210Pb), and other (total P) determinands. A numerical mixing model, to compare the fingerprints of contemporary catchment source materials with those of fluvial suspended sediment in transit and those of recent overbank floodplain deposits, provides a means of quantifying present and past sediment sources respectively. Sources are classified in terms of eroding surface soils under different land uses and channel banks. Eroding surface soils are the most important source of the contemporary suspended sediment loads sampled at the Institute of Hydrology flow gauging stations at Plynlimon and at Abermule. The erosion of forest soils, associated with the autumn and winter commercial activities of the Forestry Commission, is particularly evident. Reconstruction of sediment provenance over the recent past using a sediment core from the active river floodpiain at Abermule, in conjunction with a 137Cs chronology, demonstrates the significance of recent phases of afforestation and deforestation for accelerated catchment soil erosion.


2021 ◽  
Author(s):  
◽  
Jordan Katherine Miller

Sediment source fingerprinting using environmental magnetism has successfully differentiated between sediment sources in different regions of South Africa. The method was applied in the natural landscape of the Kruger National Park to trace sediment sources delivered to four reservoirs (Hartbeesfontein, Marheya, Nhlanganzwani, Silolweni) whose contributing catchments were underlain by a range of igneous, metamorphic, and sedimentary rocks. This research attempted to evaluate the impact of vegetation, lithology, and particle size controls on the ability of magnetic signatures to discriminate between lithology-defined potential sources. Potential source samples were collected from each lithology present in all catchments, except for the Lugmag catchment where the lithology was uniform, but the vegetation type varied significantly between woodland and grassland. One sediment core was taken in each of the four catchment reservoirs where there was more than one lithology present in order to unmix and apportion contributing sediment sources. Sampling time in the field was often restricted to short periods, dependent on anti-poaching activities and movement of free-roaming wildlife across the Park. This occasionally led to the sub-optimal collection of enough source samples to capture source signature variability. Mineral magnetic parameters were unable to discriminate between vegetation-defined sediment sources in the Lugmag catchment (homogenous underlying lithology) but were able to discriminate between lithology-defined sediment sources (to varying degrees) in the other four catchments. The contributions of each lithology-defined sediment source were estimated using a straightforward statistical protocol frequently used in published literature that included a Mann-Whitney U or Kruskal-Wallis H test, mass conservation test, discriminant function analysis, and an (un)mixing model. A contribution from each lithology source to reservoir sediment was estimated. Connectivity was a significant factor in understanding erosion in each of the catchments. Both longitudinal (e.g., drainage density) and lateral connectivity (e.g., floodplain - river) were important. Travel distance of eroded sediment to reservoirs was also an essential element in two of the four catchments. There are no defined floodplains, so channel bank soils are very similar to the catchment soils. Therefore, channel bank storage potential would be similar to the storage potential within the catchment. Vegetation played a crucial role in protecting soils, by reducing ii erosion potential as well as trapping and storing sediment, thereby interrupting lateral connectivity. Underlying geology and soils are determining factors of vegetation type and density. A published study estimated catchment area-specific sediment yields for different KNP catchments, including the Hartbeesfontein, Marheya, Nhlanganzwani and Silolweni catchments. The published data was used in combination with the (un)mixing model source contribution estimates of this thesis to determine specific sediment yields by lithology, i.e., for each catchment source. The polymodal particle size characteristics of the sample material led to an investigation into particle size controls on the ability of magnetic signatures to discriminate between potential sources. Due to time constraints, only the Hartbeesfontein and Marheya catchments were tested for grain size differences. For each catchment, one bulk sample was created for each lithology source. This bulk sample was divided into 10 subsamples. The samples were then fractionated into four particle size fraction groups: coarse (250 – 500 μm), medium (125 – 250 μm), fine (63 – 125 μm), and very fine (<63 μm). Reservoir samples were also bulked to create 10 down-core samples for each reservoir, and the samples were also fractionated into the four fraction groups. The same statistical protocol was applied to the fractionated samples and contribution estimates were obtained by lithology for each particle size fraction group. The goodness of fit and uncertainty of the (un)mixing model varied in each catchment, with the two measures of accuracy often showing an inverse relationship. The fractionated modelling estimated the same primary source in the two catchments as in the unfractionated modelling. However, additional information on the secondary and tertiary sources was obtained. Connectivity remained a significant factor in interpreting the results of the fractionated analysis. Specific sediment yields were estimated for each catchment source per particle size fraction group. These sediment yields provided a deeper understanding of sediment transport through a catchment and which particle size groups are most important in catchment erosion. An original contribution to research was made by estimating source contribution estimates for the four reservoirs, quantifying sediment yields for each catchment lithology and then for each catchment lithology by particle size. Mineral magnetic tracing of the catchments was applied for the first time in this region of South Africa.


Sign in / Sign up

Export Citation Format

Share Document