A COMPARATIVE STUDY ON THE PREDICTIVE ABILITY OF THE INFORMATION VALUE METHOD (IVM), FREQUENCY RATIO (FR), LOGISTIC REGRESSION (LR) AND MAXIMUM ENTROPY MODEL (MAXENT) MODELS FOR DEVELOPING DEBRIS-SLIDE SUSCEPTIBILITY MAPS

2019 ◽  
Author(s):  
Raja Das ◽  
◽  
Arpita Nandi ◽  
Andrew T. Joyner ◽  
Ingrid Luffman
Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 430 ◽  
Author(s):  
Sangey Pasang ◽  
Petr Kubíček

In areas prone to frequent landslides, the use of landslide susceptibility maps can greatly aid in the decision-making process of the socio-economic development plans of the area. Landslide susceptibility maps are generally developed using statistical methods and geographic information systems. In the present study, landslide susceptibility along road corridors was considered, since the anthropogenic impacts along a road in a mountainous country remain uniform and are mainly due to road construction. Therefore, we generated landslide susceptibility maps along 80.9 km of the Asian Highway (AH48) in Bhutan using the information value, weight of evidence, and logistic regression methods. These methods have been used independently by some researchers to produce landslide susceptibility maps, but no comparative analysis of these methods with a focus on road corridors is available. The factors contributing to landslides considered in the study are land cover, lithology, elevation, proximity to roads, drainage, and fault lines, aspect, and slope angle. The validation of the method performance was carried out by using the area under the curve of the receiver operating characteristic on training and control samples. The area under the curve values of the control samples were 0.883, 0.882, and 0.88 for the information value, weight of evidence, and logistic regression models, respectively, which indicates that all models were capable of producing reliable landslide susceptibility maps. In addition, when overlaid on the generated landslide susceptibility maps, 89.3%, 85.6%, and 72.2% of the control landslide samples were found to be in higher-susceptibility areas for the information value, weight of evidence, and logistic regression methods, respectively. From these findings, we conclude that the information value method has a better predictive performance than the other methods used in the present study. The landslide susceptibility maps produced in the study could be useful to road engineers in planning landslide prevention and mitigation works along the highway.


2020 ◽  
Author(s):  
Matebie Meten ◽  
Netra Prakash Bhandary

Abstract Landslide susceptibility assessment is an important tool for disaster management and development activities. Shikoku Island in the southwest Japan is one of the most landslide prone areas due to heavy typhoon rainfall, complex geology and the presence of mountainous areas and low topographic features (valleys).Yanase and Naka Catchments of Shikoku Island in Japan were chosen as a study area. The objective of this study is to apply Frequency Ratio Densisty (FRD), Logistic Regression (LR) and Weights of Evidence (WoE) models in a GIS environment to prepare the landslide susceptibility maps of this area and select the best one for future infrastructure and landuse planning. Data layers including slope, aspect, profile curvature, plan curvature, lithology, land use, distance from river, distance from fault and annual rainfall were used in this study. In FR method, two models were attempted but the FRD model was found slightly better in its performance. In case of LR method, two models, one with equal proportion and the other with unequal proportion of landslide and non-landslide points were applied and the one with equal proportions was chosen based on its highest performance. A total of five landslide susceptibility maps(LSMs) were produced using FR, LR and WoE models resulting two, two and one LSMs respectively. However, one best model was chosen from the FR and LR methods based on the highest area under the curve (AUC) of the receiver operating characteristic (ROC) curves. This reduced the total number of landslide susceptibility maps to three with the success rates of 86.7%, 86.8% and 80.7% from FRD, LR and WoE models respectively. For validation purpose, all landslides were overlaid over the three landslide susceptibility maps and the percentage of landslides in each susceptibility class was calculated. The percentages of landslides that fall in the high and very high susceptibility classes of FRD, LR and WoE models showed 82%, 84% and 78% respectively. This showed that the LR model with equal proportions of landslides and non-landslide points was slightly better than FRD and WoE models in predicting the probability of future landslide occurrence.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Azemeraw Wubalem

AbstractUatzau basin in northwestern Ethiopia is one of the most landslide-prone regions, which characterized by frequent high landslide occurrences causing damages in farmlands, non-cultivated lands, properties, and loss of life. Preparing a Landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. GIS-based frequency ratio, information value, and certainty factor methods were applied. The landslide inventory map was prepared from detailed fieldwork and Google Earth imagery interpretation. Thus, 514 landslides were mapped, and out of which 359 (70%) of landslides were randomly selected keeping their spatial distribution to build landslide susceptibility models, while the remaining 155 (30%) of the landslides were used to model validation. In this study, six factors, including lithology, land use/cover, distance to stream, slope gradient, slope aspect, and slope curvature were evaluated. The effects of the landslide factor of slope instability were determined by comparing with landslide inventory raster using the GIS environment. The landslide susceptibility maps of the Uatzau area were categorized into very low, low, moderate, high and very high susceptibility classes. The landslide susceptibility maps of the three models validated by the ROC curve. The results for the area under the curve (AUC) are 88.83% for the frequency ratio model, 87.03% for certainty factor, and 84.83% of information value models, which are indicating very good accuracy in the identification of landslide susceptibility zones of a region. From these resulted maps, it is possible to recommend, the statistical methods (Frequency Ratio, Information Value, and Certainty Factor Methods) are adequate to landslide susceptibility mapping. The landslide susceptibility maps can be used for regional land use planning and landslide hazard mitigation purposes.


Sign in / Sign up

Export Citation Format

Share Document