scholarly journals The CarboEurope Regional Experiment Strategy

2006 ◽  
Vol 87 (10) ◽  
pp. 1367-1380 ◽  
Author(s):  
A. J. Dolman ◽  
J. Noilhan ◽  
P. Durand ◽  
C. Sarrat ◽  
A. Brut ◽  
...  

The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.

2011 ◽  
Vol 12 (5) ◽  
pp. 729-749 ◽  
Author(s):  
Paul A. Dirmeyer

Abstract The Global Soil Wetness Project (GSWP) is an international land surface modeling research effort involving dataset production, validation, model comparison, and scientific investigation in the areas of land surface hydrology and climatology. GSWP is characterized by the integration of multiple land surface models on a latitude–longitude grid in a stand-alone uncoupled mode, driven by meteorological forcing data constructed by combining atmospheric analyses and gridded observed data products. The models produce time series of gridded estimates of land surface fluxes and state variables that are then studied and compared. Defining characteristics that have distinguished GSWP include its global scale, application of land surface models in the same gridded structure as they are used in weather and climate models, and the multimodel approach, which included production of a multimodel analysis in its second phase. This paper gives an overview of the history of GSWP beginning with its inception within the International Satellite Land Surface Climatology Project. Various phases of the project are described, and a review of scientific results stemming from the project is presented. Musings on future directions of research are also discussed.


2021 ◽  
Author(s):  
Sandy P. Harrison ◽  
Wolfgang Cramer ◽  
Oskar Franklin ◽  
Iain Colin Prentice ◽  
Han Wang ◽  
...  

2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


2017 ◽  
Vol 18 (3) ◽  
pp. 897-915 ◽  
Author(s):  
Jennifer L. Jefferson ◽  
Reed M. Maxwell ◽  
Paul G. Constantine

Abstract Land surface models, like the Common Land Model component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California, Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO2 Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.


2018 ◽  
Vol 10 (5) ◽  
pp. 751 ◽  
Author(s):  
Sujay Kumar ◽  
Thomas Holmes ◽  
David Mocko ◽  
Shugong Wang ◽  
Christa Peters-Lidard

Sign in / Sign up

Export Citation Format

Share Document