THE MIDDLE PLEISTOCENE UNCONFORMITY AND MIS 12-11 (~478-385 KA): GLACIOFLUVIAL PROCESSES OVERRIDE LATE MIOCENE-MIDDLE PLEISTOCENE (~6 MA-500 KA) TECTONO-MAGMATIC CAPTURE AND DEEP-CANYON INCISION, WESTERN GREAT PLAINS-SOUTHERN ROCKY MOUNTAINS-COLORADO PLATEAU REGION, NORTH AMERICA

2019 ◽  
Author(s):  
Cal Ruleman ◽  
◽  
Adam M. Hudson ◽  
Marc W. Caffee ◽  
Keith A. Brugger
2021 ◽  
Author(s):  
David Thomas Liefert ◽  
Bryan Nolan Shuman

Abstract. The use of the climatic anomaly known as the “4.2 ka event” as the stratigraphic division between the mid- and late Holocene has prompted debate over its impact, geographic pattern, and significance. The anomaly has primarily been described as abrupt drying, but evidence of hydroclimate change at ca. 4 ka is inconsistent among sites globally, and few sites in North America document a major drought. Climate records from the southern Rocky Mountains demonstrate the challenge with diagnosing the extent and severity of the anomaly. Dune-field chronologies and a pollen record in southeast Wyoming reveal several centuries of low moisture at around 4.2 ka and prominent low stands in lakes in Colorado suggest the drought was unique amid Holocene variability, but detailed carbonate oxygen isotope (δ18Ocarb) records from Colorado do not record it. We find new evidence from δ18Ocarb in a small mountain lake in southeast Wyoming of an abrupt reduction in effective moisture or snowpack from approximately 4.2–4 ka that coincides in time with the other evidence from the southern Rocky Mountains and the western Great Plains of regional drying at around 4.2 ka. We find that the δ18Ocarb in our record may reflect cool-season inputs into the lake, which do not appear to track the strong enrichment of heavy oxygen by evaporation during summer months today. The modern relationship differs from some widely applied conceptual models of lake-isotope systems and may indicate reduced winter precipitation rather than enhanced evaporation at ca. 4.2 ka. Inconsistencies among the North American records, particularly in δ18Ocarb trends, thus show that site-specific factors can prevent identification of the patterns of multi-century drought. However, the prominence of the drought at ca. 4 ka among a growing number of sites in the North American interior suggests it was a regionally substantial climate event amid other Holocene variability.


Paleobiology ◽  
2011 ◽  
Vol 37 (1) ◽  
pp. 50-71 ◽  
Author(s):  
Caroline A. E. Strömberg ◽  
Francesca A. McInerney

The rapid ecological expansion of grasses with C4 photosynthesis at the end of the Neogene (8–2 Ma) is well documented in the fossil record of stable carbon isotopes. As one of the most profound vegetation changes to occur in recent geologic time, it paved the way for modern tropical grassland ecosystems. Changes in CO2 levels, seasonality, aridity, herbivory, and fire regime have all been suggested as potential triggers for this broadly synchronous change, long after the evolutionary origin of the C4 pathway in grasses. To date, these hypotheses have suffered from a lack of direct evidence for floral composition and structure during this important transition. This study aimed to remedy the problem by providing the first direct, relatively continuous record of vegetation change for the Great Plains of North America for the critical interval (ca. 12–2 Ma) using plant silica (phytolith) assemblages.Phytoliths were extracted from late Miocene-Pliocene paleosols in Nebraska and Kansas. Quantitative phytolith analysis of the 14 best-preserved assemblages indicates that habitats varied substantially in openness during the middle to late Miocene but became more uniformly open, corresponding to relatively open grassland or savanna, during the late Miocene and early Pliocene. Phytolith data also point to a marked increase of grass short cells typical of chloridoid and other potentially C4 grasses of the PACMAD clade between 8 and 5 Ma; these data suggest that the proportion of these grasses reached up to ∼50–60% of grasses, resulting in mixed C3-C4 and highly heterogeneous grassland communities by 5.5 Ma. This scenario is consistent with interpretations of isotopic records from paleosol carbonates and ungulate tooth enamel. The rise in abundance of chloridoids, which were present in the central Great Plains since the early Miocene, demonstrates that the “globally” observed lag between C4 grass evolution/taxonomic diversification and ecological expansion occurred at the regional scale. These patterns of vegetation alteration imply that environmental change during the late Miocene-Pliocene played a major role in the C3-C4 shift in the Great Plains. Specifically, the importance of chloridoids as well as a decline in the relative abundance of forest indicator taxa, including palms, point to climatic drying as a key trigger for C4 dominance.


1951 ◽  
Vol 32 (4) ◽  
pp. 119-131 ◽  
Author(s):  
H. T. Harrison ◽  
W. B. Beckwith

The highest hail-thunderstorm ratio in the country is found over the western Great Plains and the east slope of the Rocky Mountains in a band extending from the Rio Grande northward to the Canadian border. Point frequency of hail over western United States is of little value in determining relative area exposures to hail. Frequency of hail in a metropolitan area such as Denver is at least ten times as great as random point frequency within that area. Hail probably occurs aloft during the growing stage of each thunderstorm which forms in the Denver Section. Hail is predominantly a post-coldfrontal phenomenon at Denver, but no satisfactory method has been found so far of predicting damaging hail. Airborne radar storm detection equipment offers the greatest hope of avoiding damaging hail in flight.


1990 ◽  
Vol 27 (4) ◽  
pp. 520-524 ◽  
Author(s):  
John E. Storer

Four genera of primates are present in the early to mid-Duchesnean Lac Pelletier Lower Fauna. Phenacolemur leonardi sp.nov., Trogolemur sp., Omomys sp., and Macrotarsius cf. M. montanus make up the latest diverse primate assemblage known from North America and from the Great Plains. This primate assemblage is similar to the earliest Duchesnean assemblage from the Wood locality, Badwater Creek area of central Wyoming, and primate genera appear to have been widely distributed through the Great Plains and Rocky Mountains in the Uintan–Duchesnean.


2018 ◽  
Vol 14 (8) ◽  
pp. 1195-1212 ◽  
Author(s):  
Vachel A. Carter ◽  
Jacqueline J. Shinker ◽  
Jonathon Preece

Abstract. Droughts are a naturally re-occurring phenomena that result in economic and societal losses. Yet, the most historic droughts that occurred in the 1930s and 1950s in the Great Plains and western United States were both shorter in duration and less severe than megadroughts that have plagued the region in the past. Roughly 4200 years ago, a ∼150-year long megadrought occurred in the central Rocky Mountains, as indicated by sedimentary pollen evidence documenting a brief and unique change in vegetation composition from Long Lake, southeastern Wyoming. Neighbouring the central Rocky Mountains, several dune fields reactivated in the western Great Plains around this time period illustrating a severe regional drought. While sedimentary pollen provides evidence of past drought, paleoecological evidence does not provide context for the climate mechanisms that may have caused the drought. Thus, a modern climate analogue technique was applied to the sedimentary pollen and regional dune reactivation evidence identified from the region to provide a conceptual framework for exploring possible mechanisms responsible for the observed ecological changes. The modern climate analogues of 2002/2012 illustrate that warm and dry conditions persisted through the growing season and were associated with anomalously higher-than-normal geopotential heights centred over the Great Plains. In the spring, higher-than-normal heights suppressed moisture transport via the low-level jet from the Gulf of Mexico creating a more southwesterly component of flow. In the summer, higher-than-normal heights persisted over the northern Great Plains resulting in a wind shift with an easterly component of flow, drawing in dry continental air into the study region. In both cases, lower-than-normal moisture in the atmosphere (via 850 mbar specific humidity) inhibited uplift and potential precipitation. Thus, if the present scenario existed during the 4.2 ka drought, the associated climatic responses are consistent with local and regional proxy data suggesting regional drought conditions in the central Rocky Mountains and western Great Plains.


Sign in / Sign up

Export Citation Format

Share Document