INTEGRATING TECTONIC GEOMORPHOLOGY WITH SEISMIC HAZARDS ON THE MAE CHAN FAULT, NORTHERN THAILAND: DECIPHERING LAND SURFACE CHANGE FROM TECTONICS AND HUMAN ACTIVITY

2019 ◽  
Author(s):  
Yann Gavillot ◽  
◽  
Ray J. Weldon ◽  
Weerachat Wiwegwin ◽  
Lewis Owen ◽  
...  
2020 ◽  
Vol 12 (4) ◽  
pp. 699 ◽  
Author(s):  
Qiang Zhou ◽  
Heather Tollerud ◽  
Christopher Barber ◽  
Kelcy Smith ◽  
Daniel Zelenak

The U.S. Geological Survey’s Land Change Monitoring, Assessment, and Projection (LCMAP) initiative involves detecting changes in land cover, use, and condition with the goal of producing land change information to improve the understanding of the Earth system and provide insights on the impacts of land surface change on society. The change detection method ingests all available high-quality data from the Landsat archive in a time series approach to identify the timing and location of land surface change. Annual thematic land cover maps are then produced by classifying time series models. In this paper, we describe the optimization of the classification method used to derive the thematic land cover product. We investigated the influences of auxiliary data, sample size, and training from different sources such as the U.S. Geological Survey’s Land Cover Trends project and National Land Cover Database (NLCD 2001 and NLCD 2011). The results were evaluated and validated based on independent data from the training dataset. We found that refining the auxiliary data effectively reduced artifacts in the thematic land cover map that are related to data availability. We improved the classification accuracy and stability considerably by using a total of 20 million training pixels with a minimum of 600,000 and a maximum of 8 million training pixels per class within geographic windows consisting of nine Analysis Ready Data tiles (450 by 450 km2). Comparisons revealed that the NLCD 2001 training data delivered the best classification accuracy. Compared to the original LCMAP classification strategy used for early evaluation (e.g., Trends training data, 20,000 samples), the optimized classification strategy improved the annual land cover map accuracy by an average of 10%.


2017 ◽  
Vol 866 ◽  
pp. 108-111
Author(s):  
Theerapan Saesong ◽  
Pakpoom Ratjiranukool ◽  
Sujittra Ratjiranukool

Numerical Weather Model called The Weather Research and Forecasting model, WRF, developed by National Center for Atmospheric Research (NCAR) is adapted to be regional climate model. The model is run to perform the daily mean air surface temperatures over northern Thailand in 2010. Boundery dataset provided by National Centers for Environmental Prediction, NCEP FNL, (Final) Operational Global Analysis data which are on 10 x 10. The simulated temperatures by WRF with four land surface options, i.e., no land surface scheme (option 0), thermal diffusion (option 1), Noah land-surface (option 2) and RUC land-surface (option 3) were compared against observational data from Thai Meteorological Department (TMD). Preliminary analysis indicated WRF simulations with Noah scheme were able to reproduce the most reliable daily mean temperatures over northern Thailand.


1996 ◽  
Vol 15 (8-9) ◽  
pp. 843-849 ◽  
Author(s):  
H. Faure ◽  
J.M. Adams ◽  
J.P. Debenay ◽  
L. Faure-Denard ◽  
D.R. Grants ◽  
...  

2020 ◽  
Author(s):  
Chunlei Meng ◽  
Junxia Dou

Abstract. Urban land surface model (ULSM) is an important tool to study the climatic effect of human activity. Now there are two main methods to parameterize the effects of human activity, the coupling method and the integrating method. For the coupled method, the urban canopy model (UCM) was developed and coupled with the land surface model for the natural land surfaces. For the integrated method, the urban land surface model was built directly based on the traditional land surface model. In this paper, the Noah Single Layer Urban Canopy Model (Noah/SLUCM) and the Integrated Urban land Model (IUM) were compared using the observed fluxes data at the 325-meter meteorology tower in Beijing. Through the comparison, the key factors and physical processes of the urban land surface model which have significant impact on the performance of ULSM were found out. The results indicate that the absorbed solar radiation of urban surface was reduced by the solar radiation scattering, the absorption of building roof and wall, and the shading effect of urban canopy and tall buildings. Urban surface roughness length and friction velocity are important in urban sensible heat flux simulation. Urban water balance and impervious surface evaporation (ISE) are important in urban latent heat flux simulation.


Sign in / Sign up

Export Citation Format

Share Document