BETWEEN THE SUPERCONTINENTS: MESOPROTEROZOIC DEER TRAIL GROUP, AN INTERMEDIATE AGE UNIT BETWEEN THE MESOPROTEROZOIC BELT-PURCELL SUPERGROUP AND THE NEOPROTEROZOIC WINDERMERE SUPERGROUP IN NORTHEASTERN WASHINGTON, USA

2020 ◽  
Author(s):  
Stephen E. Box ◽  
◽  
Chad J. Pritchard ◽  
Travis Scott Stephens ◽  
Paul B. O'Sullivan
1991 ◽  
Vol 28 (10) ◽  
pp. 1541-1552 ◽  
Author(s):  
H. J. Hofmann ◽  
E. W. Mountjoy ◽  
M. W. Teitz

Shallow-water clastic beds flanking stromatolitic carbonate mounds in the upper part of the Vendian Miette Group (Windermere Supergroup) of the Rocky Mountains contain a poorly preserved, soft-bodied fauna that comprises morphologically very variable discoid remains; these include the taxa Beltanella sp., cf. B. grandis, Charniodiscus? sp., Irridinitus? sp., Nimbia occlusa, Protodipleurosoma sp., cf. P. rugulosum, and Zolotytsia? sp. and seven types of dubiofossils.


1988 ◽  
Vol 25 (1) ◽  
pp. 1-19 ◽  
Author(s):  
William J. Devlin ◽  
Gerard C. Bond

The uppermost Proterozoic–Lower Cambrian Hamill Group of southeastern British Columbia contains geologic evidence for a phase of extensional tectonism that led directly to the onset of thermally controlled subsidence in the Cordilleran miogeocline. Moreover, the Hamill Group contains the sedimentological record of the passage of the ancient passive margin from unstable tectonic conditions associated with rifting and (or) the earliest phases of thermal subsidence to post-rift conditions characterized by stabilization of the margin and dissipation of the thermal anomaly generated during the rift phase (the rift to post-rift transition). Widespread uplift that occurred prior to and during the deposition of the lower Hamill Group is indicated by an unconformable relation with the underlying Windermere Supergroup and by stratigraphic relations between Middle and Upper Proterozoic strata and unconformably overlying upper Lower Cambrian quartz arenites (upper Hamill Group) in the southern borderlands of the Hamill basin. In addition, the coarse grain size, the feldspar content, the depositional setting, and the inferred provenance of the lower Hamill Group are all indicative of the activation of basement sources along the margins of the Hamill basin. Geologic relations within the Hamill Group that provide direct evidence for extensional tectonism include the occurrence of thick sequences of mafic metavolcanics and rapid vertical facies changes that are suggestive of syndepositional tectonism.Evidence of extensional tectonism in the Hamill Group directly supports inferences derived from tectonic subsidence analyses that indicate the rift phase that immediately preceded early Paleozoic post-rift cooling could not have occurred more than 10–20 Ma prior to 575 ± 25 Ma. These data, together with recently reported isotopic data that suggest deposition of the Windermere Supergroup began ~730–770 Ma, indicate that the rift-like deposits of the Windermere Supergroup are too old to represent the rifting that led directly to the deposition of the Cambro-Ordovician post-rift strata. Instead, Windermere sedimentation was apparently initiated by an earlier rift event, probably of regional extent, that was part of a protracted, episodic rift history that culminated with continental breakup in the latest Proterozoic – Early Cambrian.


2001 ◽  
Vol 138 (5) ◽  
pp. 589-607 ◽  
Author(s):  
MARK WILLIAMS ◽  
PHILIP STONE ◽  
DAVID J. SIVETER ◽  
PAULINE TAYLOR

The Cautley Mudstone Formation and Cystoid Limestone Member of the Ashgill Formation (Windermere Supergroup; Ashgill Series), from the Cautley district of northern England, has yielded an ostracod fauna of more than 30 species. Many of these have short ranges, permitting recognition of stratigraphically successive Pusgillian–lower Cautleyan, middle–upper Cautleyan, and Rawtheyan ostracod faunas. Several species are also known from the upper Ordovician of North America (Anticosti Island), Scotland (Girvan district) and the Baltic region (Estonia, glacial erratic boulders of northern Germany), providing evidence to correlate upper Ordovician successions in these areas. The ostracods include abundant podocopes, at some horizons accounting for more than 80% of the fauna. Binodicopes are also common, but palaeocopes are rare. Assemblages are typical of a clastic dominated open marine shelf setting. Diversity at most horizons is low (c. 3–5 species), but reaches a peak of between 13–14 species in middle Cautleyan horizons. Lower diversity at Pusgillian and Rawtheyan horizons coincides with the encroachment of deeper marine-shelf facies which were probably hostile to Ordovician benthonic ostracods. Some of the ostracods (particularly Aechmina) have distributions suggesting tolerance of a range of mid- to deep shelf benthonic palaeoenvironments, but none were pelagic. During Ashgill times the Cautley district (part of palaeocontinental Avalonia) was replete with ostracod genera and species which also occur in the Baltic region (palaeocontinental Baltica; more than 90% generic similarity) and to a lesser, but nonetheless significant extent in North America and Scotland (parts of palaeocontinental Laurentia). Such trans-Tornquist Sea and Iapetus Ocean distributional patterns add to previous ostracod data that support models which show palaeogeographical proximity of Avalonia and Baltica, and Avalonia and Laurentia, by Ashgill times. The widely cited observation, that trans-Iapetus ostracod faunas remained strictly provincial until the mid-or late Silurian, cannot be sustained.


2011 ◽  
Vol 36 (1) ◽  
pp. 413-424 ◽  
Author(s):  
Mark D. Smith ◽  
Emmanuelle Arnaud ◽  
R.W.C. Arnott ◽  
Gerald M. Ross

1996 ◽  
Vol 33 (6) ◽  
pp. 848-862 ◽  
Author(s):  
R. W. Dalrymple ◽  
G. M. Narbonne

The Sheepbed Formation (Ediacaran) is a 1 km thick, siliciclastic unit that overlies glacial deposits of the Ice Brook Formation and is overlain by carbonates of the Gametrail Formation. Observations in the Mackenzie Mountains indicate that the Sheepbed Formation accumulated in water depths of 1–1.5 km on a passive-margin, continental slope. The lower part of the formation consists predominately of dark mudstone. Fine-grained, turbiditic sandstone becomes more abundant upward, as does the scale and abundance of slope-instability indicators. Mesoscale facies successions (i.e., evidence of channels, lobes, and (or) compensation cycles) are developed in the upper half of the formation. The larger-scale changes are interpreted as reflecting a postglacial sea-level rise, followed by a relative fall and an increase in the rate of deposition. Contourites that may have been formed in response to the circulation of deep, cold water occur in the lowstand deposits. Their presence confirms previous speculation that the proto-Pacific Ocean was initiated at the beginning of Windermere deposition (ca. 780 Ma), not at the start of the Cambrian. The paleoflow direction toward the present-day northwest suggests that this part of Laurentia lay in the northern hemisphere. In situ Ediacaran megafossils are preserved on the soles of sandy turbidites; the deep-water setting indicates that these organisms were not photoautotrophs.


2019 ◽  
Author(s):  
Daniel T. Brennan ◽  
◽  
David M. Pearson ◽  
David M. Pearson ◽  
David M. Pearson ◽  
...  

1992 ◽  
Vol 6 ◽  
pp. 219-219 ◽  
Author(s):  
Guy M. Narbonne ◽  
Robert W. Dalrymple

Although most occurrences of Ediacaran fossils are from shallow-shelf deposits, taxonomically-similar assemblages have recently been described from a 2.5 km-thick succession of dark mudstones and turbiditic sandstones in the Windermere Supergroup of the Mackenzie Mountains, northwestern Canada. The paleogeographic position (20-40 km seaward of the shelf edge), abundant evidence of mass flow, and the complete absence of in situ shallow-water features imply that deposition took place on a slope considerably below storm wave-base. Ediacaran fossils were not observed in axial trough deposits (lower parts of the Twitya and Sheepbed formations), but megafossils occur sporadically in lower to middle slope deposits higher in the same formations. Megafossils and trace fossils are present in upper slope settings (Blueflower Formation) at the top of the Ediacaran succession. The megafossil assemblage varies stratigraphically, but in all formations is dominated by discoid forms (e.g. Cyclomedusa, Ediacaria, Nimbia); frondose forms and vendomiids are very rare.Megafossils are preserved mainly as positive features on the soles of thin turbidite beds. Most fossiliferous beds begin with the rippled layer of the turbidite (Tc), but a few begin with the graded (Ta) or parallel-laminated (Tb) layer. Consistent orientation and high relief of individuals, evidence of mutual deformation during growth of adjacent organisms, and other taphonomic features imply that virtually all of the taxa represent benthic polypoid and frond-like organisms (not jellyfish). Slump structures occur commonly in the sandstone fill of fossils, suggesting that many of the organisms were buried alive by the turbidite and later decomposed. Other individuals, even on the same bedding plane, exhibit graded to laminated fill identical to that of the overlying turbidite bed, indicating that the depressions on the sea bottom produced by these individuals were empty at the time of turbidite deposition. Escape structures are absent, suggesting that the Ediacaran organisms were not capable of burrowing up through even thin layers of sand.Ediacaran megafossils are invariably preserved on black, wrinkled surfaces similar to those elsewhere interpreted as microbial mats. Molding of delicate features (including tentacles), preservation of open molds as negative epireliefs, and sedimentological evidence of considerable cohesion of these surfaces relative to the underlying turbiditic muds (Td,e) supports this interpretation, and suggests that microbial mats were as important in the preservation of these deep-water Ediacara faunas as they were in their shallow-water equivalents. The presence of the wrinkled mats and their associated Ediacaran fossils almost exclusively in the pyritic intervals of the succession suggests that both may have lived under exaerobic conditions in this deep-water setting.


Sign in / Sign up

Export Citation Format

Share Document