MEASURING THE IMPACT OF GROUNDWATER ON BOG TURTLE THERMAL HABITAT IN SOUTHERN APPALACHIAN FENS

2020 ◽  
Author(s):  
Caroline R. Moore ◽  
◽  
Sarah G. Evans ◽  
Connor Miller
2014 ◽  
Vol 92 (7) ◽  
pp. 591-601 ◽  
Author(s):  
Pierre U. Blier ◽  
Hélène Lemieux ◽  
Nicolas Pichaud

Changes in environmental temperature can pose considerable challenges to animals and shifts in thermal habitat have been shown to be a major force driving species’ adaptation. These adaptations have been the focus of major research efforts to determine the physiological or metabolic constraints related to temperature and to reveal the phenotypic characters that can or should adjust. Considering the current consensus on climate change, the focus of research will likely shift to questioning whether ectothermic organisms will be able to survive future modifications of their thermal niches. Organisms can adjust to temperature changes through physiological plasticity (e.g., acclimation), genetic adaptation, or via dispersal to more suitable thermal habitats. Thus, it is important to understand what genetic and phenotypic attributes—at the individual, population, and species levels—could improve survival success. These issues are particularly important for ectotherms, which are in thermal equilibrium with the surrounding environment. To start addressing these queries, we should consider what physiological or metabolic functions are responsible for the impact of temperature on organisms. Some recent developments indicate that mitochondria are key metabolic structures determining the thermal range that an organism can tolerate. The catalytic capacity of mitochondria is highly sensitive to thermal variation and therefore should partly dictate the temperature dependence of biological functions. Mitochondria contain a complex network of different enzymatic reaction pathways that interact synergistically. The precise regulation of both adenosine triphosphate (ATP) and reactive oxygen species (ROS) production depends on the integration of different enzymes and pathways. Here, we examine the temperature dependence of different parts of mitochondrial pathways and evaluate the evolutionary challenges that need to be overcome to ensure mitochondrial adaptations to new thermal environments.


2013 ◽  
Vol 45 (2) ◽  
pp. 14 ◽  
Author(s):  
L. Marziali ◽  
B. Rossaro

The response of 443 chironomid species to water temperature was analyzed, with the aim of defining their thermal optimum, tolerance limits and thermal habitat. The database included 4442 samples mainly from Italian river catchments collected from the 1950s up to date. Thermal preferences were calculated separately for larval and pupal specimens and for different habitats: high altitude and lowland lakes in the Alpine ecoregion; lowland lakes in the Mediterranean ecoregion; heavily modified water bodies; kryal, krenal, rhithral and potamal in running waters. Optimum response was calculated as mean water temperature, weighted by species abundances; tolerance as weighted standard deviation; skewness and kurtosis as 3<sup>rd</sup> and 4<sup>th</sup> moment statistics. The responses were fitted to normal uni- or plurimodal Gaussian models. Cold stenothermal species showed: i) unimodal response, ii) tolerance for a narrow temperature range, iii) optima closed to their minimum temperature values, iv) leptokurtic response. Thermophilous species showed: i) optima at different temperature values, ii) wider tolerance, iii) optima near their maximum temperature values, iv) platikurtic response, often fitting a plurimodal model. As expected, lower optima values and narrower tolerance were obtained for kryal and krenal, than for rhithral, potamal and lakes. Thermal response curves were produced for each species and were discussed according to species distribution (<em>i.e. </em>altitudinal range in running water and water depth in lakes), voltinism and phylogeny. Thermal optimum and tolerance limits and the definition of the thermal habitat of species can help predicting the impact of global warming on freshwater ecosystems.


2019 ◽  
Vol 19 (1) ◽  
pp. 167-177 ◽  
Author(s):  
Mahdi Sedighkia ◽  
Asghar Abdoli ◽  
Seyed Ali Ayyoubzadeh ◽  
Amirabas Ahmadi

2020 ◽  
Author(s):  
Stephanie K. Adamczak ◽  
William A. McLellan ◽  
Andrew J. Read ◽  
Christopher L. P. Wolfe ◽  
Lesley H. Thorne

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2586
Author(s):  
Christos Theodoropoulos ◽  
Ioannis Karaouzas ◽  
Anastasios Stamou

What would happen in Mediterranean rivers and streams if warming but not drying occurred? We examined whether the delivery of environmental flows within a warming climate can maintain suitable macroinvertebrate habitats despite warming. A two-dimensional ecohydraulic model was used to (1) simulate the influence of water temperature and flow on macroinvertebrates by calculating habitat suitability for 12 climate change scenarios and (2) identify the mechanism by which macroinvertebrate assemblages respond to warming. The results suggest that not all watersheds will be equally influenced by warming. The impact of warming depends on the habitat conditions before warming occurs. Watersheds can, thus, be categorized as losing (those in which warming will degrade current optimal thermal habitat conditions) and winning ones (those in which warming will optimize current sub-optimal thermal habitat conditions, until a given thermal limit). Our models indicate that in losing watersheds, the delivery of environmental flows can maintain suitable habitats (and, thus, healthy macroinvertebrate assemblages) for up to 1.8–2.5 °C of warming. In winning watersheds, environmental flows can maintain suitable habitats when thermal conditions are optimal. Environmental flows could, thus, be used as a proactive strategy/tool to mitigate the ecological impacts of warming before more expensive reactive measures within a changing climate become necessary.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


Sign in / Sign up

Export Citation Format

Share Document