Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica

2007 ◽  
Vol 119 (3-4) ◽  
pp. 275-288 ◽  
Author(s):  
M.J. Flowerdew ◽  
I.L. Millar ◽  
M.L. Curtis ◽  
A.P.M. Vaughan ◽  
M.S.A. Horstwood ◽  
...  
Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 36 ◽  
Author(s):  
Victoria B. Ershova ◽  
Andrei V. Prokopiev ◽  
Andrey K. Khudoley ◽  
Tom Andersen ◽  
Kåre Kullerud ◽  
...  

U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures of the seven dated samples are very similar, suggesting a common provenance for the clastic detritus. The majority of the dated grains belong to the late Neoproterozoic to Cambrian ages, which suggests the maximum depositional age of the enclosing sedimentary units to be Cambrian. The εHf(t) values indicate that juvenile magma mixed with evolved continental crust and the zircons crystallized within a continental magmatic arc setting. Our data strongly suggest that the main provenance for the studied clastics was located within the Timanian Orogen. A review of the available detrital zircon ages from late Neoproterozoic to Cambrian strata across the wider Arctic strongly suggests that Kara Terrane, Novaya Zemlya, Seward Peninsula (Arctic Alaska), Alexander Terrane, De Long Islands, and Scandinavian Caledonides all formed a single tectonic domain during the Cambrian age, with clastics predominantly sourced from the Timanian Orogen.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 936
Author(s):  
Tae-Ho Lee ◽  
Kye-Hun Park

There was a hiatus in magmatism in Korea and Japan, located on the eastern continental margin of Asia, during a period of about 40 Ma from 160 Ma to 120 Ma. The cause of the resumption of magmatism since then is not yet well understood. In this study, we analyzed the Hf isotope composition of detrital zircons in the Cretaceous sediments of Korea (Hayang Group) and Japan (Goshoura and Himenoura groups) to investigate the tectonic evolution of eastern Asia in the Early Cretaceous period. εHf(t) in Cretaceous zircons from Japanese samples values from +8.2 to +0.1, suggesting that magmatism was sourced from the depleted juvenile materials, which is compatible with ridge subduction and subsequent melting of the young oceanic crust. εHf(t) values from Cretaceous zircons in the Hayang Group are negative, except for the Jindong Formation, which had a sediment supply from Japan, indicating that the old continental crust material of the Korean Peninsula was included in the magma generation. The detrital zircons of this study exhibit a depleted isotopic character at the beginning of subduction-related magmatism in Permian and Early Cretaceous, and then gradually change to a more enriched composition. This trend may be a typical example of the Pacific-type orogenic cycle.


2021 ◽  
Author(s):  
Qian Liu ◽  
Toshiaki Tsunogae ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao ◽  
...  

<p>Amalgamation of northern Gondwana involves a wealth of present-day East Asian blocks (e.g., South China, North China, Alxa, Tarim, Indochina, Qiangtang, Sibumasu, Lhasa, etc.) due to consumption and closure of the Proto-Tethys Ocean. Locating the Tarim craton during assembly of northern Gondwana remains enigmatic, with different models separating Tarim from Gondwana by a paleoceanic domain throughout the Paleozoic, advocating a long-term Tarim-Australia linkage in the Neoproterozoic to the early Paleozoic, or suggesting a Tarim-Arabia connection in the early Paleozoic.</p><p>This study carried out field-based zircon U-Pb dating and Hf isotopic analyses for early Paleozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. New dating results revealed that the early Paleozoic sedimentary rocks were deposited from ca. 494 to 449 Ma. Provenance tracing indicates the ca. 494-477 Ma sedimentary rocks were primarily sourced from the local Altyn Tagh orogen to the south of the North Altyn Ocean (one branch of the Proto-Tethys Ocean between southeastern Tarim and northern Gondwana). In contrast, the ca. 465-449 Ma sedimentary rocks have remarkably increasing ca. 840-780 Ma, 2.0-1.7 Ga, and 2.7-2.4 Ga detrital zircons, indicating an augmented supply of detritus from the Tarim craton to the north of the North Altyn Ocean. Such a significant provenance shift between ca. 477 and 465 Ma marks the timing of the final closure of the North Altyn Ocean. Combined with the timing of the final closure of other branches of the Proto-Tethys Ocean, the entire Proto-Tethys Ocean might have been progressively closed at ca. 500-420 Ma, resulting in the connection of most East Asian blocks with northern Gondwana. Based on detrital zircon U-Pb-Hf isotopic comparison, Tarim most likely shared a North Indian affinity with many East Asian blocks (such as North Qilian, North Qinling, South China, Indochina, South Qiangtang, etc.). This new finding argues against an Australian or Arabian affinity for the Tarim craton.</p><p>This work was financially supported by National Natural Science Foundation of China Projects (grants 41730213, 42072264, 41902229, 41972237, and 41888101), Hong Kong Research Grants Council General Research Fund (grant 17307918), and Grant-in-Aids for Scientific Research from Japan Society for the Promotion of Science (JSPS) to Prof. Toshiaki Tsunogae (No. 18H01300) and to Dr. Qian Liu (No. 19F19020). JSPS fellowship is also much appreciated.</p>


Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


2021 ◽  
Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
et al.

Supplementary Figure S1: Representative cathodoluminescence images of zircons from the northwestern Yangtze block samples; Supplementary Table S1: U–Pb dating results and in situ Lu–Hf isotopic data for detrital zircons from the northwestern Yangtze block samples.


Author(s):  
Qian Liu ◽  
Guochun Zhao ◽  
Jianhua Li ◽  
Jinlong Yao ◽  
Yigui Han ◽  
...  

The evolution of the northern margin of Gondwana, especially to the north of India and Australia, remains enigmatic. Much controversy concerns when and where the Tarim craton was amalgamated with northern Gondwana due to final closure of the North and South Altyn Oceans (two branches of the Proto−Tethys Ocean between southeastern Tarim and northern Gondwana). This study addressed these issues through systematic field-based zircon U-Pb dating and Hf-isotope analyses of early Paleozoic sedimentary rocks in the Altyn Tagh orogen. New dating results reveal depositional ages from ca. 494 to 426 Ma. Provenance tracing indicates the ca. 494−477 Ma samples were dominantly sourced from local Altyn Tagh areas to the south of the North Altyn Ocean, whereas the ca. 465−449 Ma samples are characterized by a significant increase in ca. 2.7−2.4 Ga, 2.0−1.7 Ga, and 840−780 Ma detrital zircons, indicating an augmented supply of detritus from the Tarim craton to the north of the North Altyn Ocean. This change indicates a major provenance shift from a single to multiple source regions between ca. 477 and 465 Ma, marking the timing of the final closure of the North Altyn Ocean. Zircon U-Pb and Hf-isotopic data from the ca. 444−426 Ma samples resemble those from the ca. 465−449 Ma samples, suggesting local sediment recycling related to a postcollisional regime. Considering the South Altyn Ocean and other branches of the Proto−Tethys Ocean, we infer that the entire Proto−Tethys Ocean might have been progressively closed at ca. 500−420 Ma, leading to the amalgamation of most East Asian blocks with northern Gondwana. Detrital zircon U-Pb and Hf-isotope comparisons indicate that Tarim shared a North Indian affinity with many East Asian terranes (such as North Qilian, North Qinling, South China, Indochina, South Qiangtang, etc.), rather than with Arabia-Iran or other terranes (e.g., Lhasa and Sibumasu) that were adjacent to western Australia along the northern margin of Gondwana.


Sign in / Sign up

Export Citation Format

Share Document