Constraining the effects of dynamic topography on the development of Late Cretaceous Cordilleran foreland basin, western United States

Author(s):  
Zhiyang Li ◽  
Jennifer Aschoff

Dynamic topography refers to the vertical deflection (i.e., uplift and subsidence) of the Earth’s surface generated in response to mantle flow. Although dynamic subsidence has been increasingly invoked to explain the subsidence and migration of depocenters in the Late Cretaceous North American Cordilleran foreland basin (CFB), it remains a challenging task to discriminate the effects of dynamic mantle processes from other subsidence mechanisms, and the spatial and temporal scales of dynamic topography is not well known. To unravel the relationship between sedimentary systems, accommodation, and subsidence mechanisms of the CFB through time and space, a high-resolution chronostratigraphic framework was developed for the Upper Cretaceous strata based on a dense data set integrating >600 well logs from multiple basins/regions in Wyoming, Utah, Colorado, and New Mexico, USA. The newly developed stratigraphic framework divides the Upper Cretaceous strata into four chronostratigraphic packages separated by chronostratigraphic surfaces that can be correlated regionally and constrained by ammonite biozones. Regional isopach patterns and shoreline trends constructed for successive time intervals suggest that dynamic subsidence influenced accommodation creation in the CFB starting from ca. 85 Ma, and this wave of subsidence increasingly affected the CFB by ca. 80 Ma as subsidence migrated from the southwest to northeast. During 100−75 Ma, the depocenter migrated from central Utah (dominantly flexural subsidence) to north-central Colorado (dominantly dynamic subsidence). Subsidence within the CFB during 75−66 Ma was controlled by the combined effects of flexural subsidence induced by local Laramide uplifts and dynamic subsidence. Results from this study provide new constraints on the spatio-temporal footprint and migration of large-scale (>400 km × 400 km) dynamic topography at an average rate ranging from ∼120 to 60 km/m.y. in the CFB through the Late Cretaceous. The wavelength and location of dynamic topography (subsidence and uplift) generated in response to the subduction of the conjugate Shatsky Rise highly varied through both space and time, probably depending on the evolution of the oceanic plateau (e.g., changes in its location, subduction angle and depth, and buoyancy). Careful, high-resolution reconstruction of regional stratigraphic frameworks using three-dimensional data sets is critical to constrain the influence of dynamic topography. The highly transitory effects of dynamic topography need to be incorporated into future foreland basin models to better reconstruct and predict the formation of foreland basins that may have formed under the combined influence of upper crustal flexural loading and dynamic subcrustal loading associated with large-scale mantle flows.

2021 ◽  
Author(s):  
Zhiyang Li ◽  
Jennifer Aschoff

Table S1 includes sources for the chronostratigraphic framework in Figure 3 and Table S2 includes information of well logs shown in Figure 4.


2021 ◽  
Author(s):  
Zhiyang Li ◽  
Jennifer Aschoff

Table S1 includes sources for the chronostratigraphic framework in Figure 3 and Table S2 includes information of well logs shown in Figure 4.


2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2021 ◽  
Author(s):  
Hilmar von Eynatten ◽  
Jonas Kley ◽  
István Dunkl

<p>Large parts of Central Europe have experienced exhumation in Late Cretaceous to Paleogene time. Previous studies mainly focused on thrusted basement uplifts to unravel magnitude, processes and timing of exhumation. In this study we present a comprehensive thermochronological dataset from mostly Permo-Triassic strata exposed adjacent to and between the major basement uplifts in central Germany, comprising an area of at least some 250-300 km across. Results of apatite fission track and (U-Th)/He analyses from >100 new samples reveal that (i) km-scale exhumation affected the entire region, suggesting long-wavelength domal uplift, (ii) thrusting of basement blocks like the Harz Mountains and the Thuringian Forest focused in the Late Cretaceous (about 90-70 Ma) while superimposed domal uplift of central Germany appears slightly younger (about 75-55 Ma), and (iii) large parts of the domal uplift experienced removal of 3 to 4 km of Mesozoic strata. Using spatial extent, magnitude and timing as constraints we find that thrusting and crustal thickening alone can account for no more than half of the domal uplift. Most likely, dynamic topography caused by upwelling asthenosphere has contributed significantly to the observed pattern of exhumation in central Germany.</p>


2021 ◽  
Author(s):  
Piotr Krzywiec ◽  
Łukasz Słonka ◽  
Quang Nguyen ◽  
Michał Malinowski ◽  
Mateusz Kufrasa ◽  
...  

<p>In 2016, approximately 850 km of high-resolution multichannel seismic reflection data of the BALTEC survey have been acquired offshore Poland within the transition zone between the East European Craton and the Paleozoic Platform. Data processing, focused on removal of multiples, strongly overprinting geological information at shallower intervals, included SRME, TAU-P domain deconvolution, high resolution parabolic Radon demultiple and SWDM (Shallow Water De-Multiple). Entire dataset was Kirchhoff pre-stack time migrated. Additionally, legacy shallow high-resolution multichannel seismic reflection data acquired in this zone in 1997 was also used. All this data provided new information on various aspects of the Phanerozoic evolution of this area, including Late Cretaceous to Cenozoic tectonics and sedimentation. This phase of geological evolution could be until now hardly resolved by analysis of industry seismic data as, due to limited shallow seismic imaging and very strong overprint of multiples, essentially no information could have been retrieved from this data for first 200-300 m. Western part of the BALTEC dataset is located above the offshore segment of the Mid-Polish Swell (MPS) – large anticlinorium formed due to inversion of the axial part of the Polish Basin. BALTEC seismic data proved that Late Cretaceous inversion of the Koszalin – Chojnice fault zone located along the NE border of the MPS was thick-skinned in nature and was associated with substantial syn-inversion sedimentation. Subtle thickness variations and progressive unconformities imaged by BALTEC seismic data within the Upper Cretaceous succession in vicinity of the Kamień-Adler and the Trzebiatów fault zones located within the MPS documented complex interplay of Late Cretaceous basin inversion, erosion and re-deposition. Precambrian basement of the Eastern, cratonic part of the study area is overlain by Cambro-Silurian sedimentary cover. It is dissected by a system of steep, mostly reverse faults rooted in most cases in the deep basement. This fault system has been regarded so far as having been formed mostly in Paleozoic times, due to the Caledonian orogeny. As a consequence, Upper Cretaceous succession, locally present in this area, has been vaguely defined as a post-tectonic cover, locally onlapping uplifted Paleozoic blocks. New seismic data, because of its reliable imaging of the shallowest substratum, confirmed that at least some of these deeply-rooted faults were active as a reverse faults in latest Cretaceous – earliest Paleogene. Consequently, it can be unequivocally proved that large offshore blocks of Silurian and older rocks presently located directly beneath the Cenozoic veneer must have been at least partly covered by the Upper Cretaceous succession; then, they were uplifted during the widespread inversion that affected most of Europe. Ensuing regional erosion might have at least partly provided sediments that formed Upper Cretaceous progradational wedges recently imaged within the onshore Baltic Basin by high-end PolandSPAN regional seismic data. New seismic data imaged also Paleogene and younger post-inversion cover. All these results prove that Late Cretaceous tectonics substantially affected large areas located much farther towards the East than previously assumed.</p><p>This study was funded by the Polish National Science Centre (NCN) grant no UMO-2017/27/B/ST10/02316.</p>


2020 ◽  
Author(s):  
Sarah Louis ◽  
Elco Luijendijk ◽  
Christoph von Hagke ◽  
István Dunkl ◽  
Ralf Littke ◽  
...  

<p>Foreland basin sediments mirror the history of an orogeny. Deformation and geodynamic processes in low spatial extend (e.g. dozens of km) can be quantified using kinematic restoration. Processes happening deep underneath an orogen show a large spatial manifestation that is difficult to quantify in time and space. Marine units at surface outcrops show 900 m of net uplift since deposition in undeformed parts of the alpine foreland basin. Existing low-temperature thermochronology data from the Swiss part of the Molasse Basin show a thermal overprint that indicates exhumation of more than 1.5 km. We quantify the wavelength of deep seated processes of the Alpine orogen by generating and analyzing a holistic dataset of the entire alpine foreland basin. In addition to compiling existing data from the western part of the basin we have generated a new apatite (U-Th)/He and vitrinite reflectance data set from the central and eastern part of the basin. The new apatite (U-Th)/He ages in the German part of the basin show exhumation below or close to the detection limit (~1.5 km). Within the folded and thrusted Molasse, exhumation is localized along thrusts and the thermochronological data indicates thrusting between 10 to 20 Ma. Vitrinite reflectance data reveals a trend of exhumation increasing from East to West. Parts of the central German Molasse basin have been exhumed as well. Thus, on the large scale we can see longwave exhumation patterns in the western part of the basin that affect both the deformed and undeformed parts of the basin which cannot only be related to Jura thrusting.</p>


2020 ◽  
Author(s):  
Vera Thiemig ◽  
Peter Salamon ◽  
Goncalo N. Gomes ◽  
Jon O. Skøien ◽  
Markus Ziese ◽  
...  

<p>We present EMO-5, a Pan-European high-resolution (5 km), (sub-)daily, multi-variable meteorological data set especially developed to the needs of an operational, pan-European hydrological service (EFAS; European Flood Awareness System). The data set is built on historic and real-time observations coming from 18,964 meteorological in-situ stations, collected from 24 data providers, and 10,632 virtual stations from four high-resolution regional observational grids (CombiPrecip, ZAMG - INCA, EURO4M-APGD and CarpatClim) as well as one global reanalysis product (ERA-Interim-land). This multi-variable data set covers precipitation, temperature (average, min and max), wind speed, solar radiation and vapor pressure; all at daily resolution and in addition 6-hourly resolution for precipitation and average temperature. The original observations were thoroughly quality controlled before we used the Spheremap interpolation method to estimate the variable values for each of the 5 x 5 km grid cells and their affiliated uncertainty. EMO-5 v1 grids covering the time period from 1990 till 2019 will be released as a free and open Copernicus product mid-2020 (with a near real-time release of the latest gridded observations in future). We would like to present the great potential EMO-5 holds for the hydrological modelling community.</p><p> </p><p>footnote: EMO = European Meteorological Observations</p>


Solid Earth ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 935-958
Author(s):  
Hilmar von Eynatten ◽  
Jonas Kley ◽  
István Dunkl ◽  
Veit-Enno Hoffmann ◽  
Annemarie Simon

Abstract. Large parts of central Europe experienced exhumation in Late Cretaceous to Paleogene time. Previous studies mainly focused on thrusted basement uplifts to unravel the magnitude, processes and timing of exhumation. This study provides, for the first time, a comprehensive thermochronological dataset from mostly Permo-Triassic strata exposed adjacent to and between the basement uplifts in central Germany, comprising an area of at least some 250–300 km across. Results of apatite fission-track and (U–Th) / He analyses on > 100 new samples reveal that (i) kilometre-scale exhumation affected the entire region, (ii) thrusting of basement blocks like the Harz Mountains and the Thuringian Forest focused in the Late Cretaceous (about 90–70 Ma), while superimposed domal uplift of central Germany is slightly younger (about 75–55 Ma), and (iii) large parts of the domal uplift experienced removal of 3 to 4 km of Mesozoic strata. Using spatial extent, magnitude and timing as constraints suggests that thrusting and crustal thickening alone can account for no more than half of the domal uplift. Most likely, dynamic topography caused by upwelling asthenosphere significantly contributed to the observed pattern of exhumation in central Germany.


2021 ◽  
Author(s):  
Bernardo Jose Franco ◽  
Maria Agustina Celentano ◽  
Desdemona Magdalena Popa

Abstract Objectives/Scope Aptian (Shuaiba-Bab) and Cenomanian (Mishrif-Shilaif) intra-shelf basins were extensively studied with their genesis focused on environmental/climatic disturbances (Vahrenkamp et al., 2015a). Additionally, local tectonic events can also affect the physiography of these basins, especially the Cenomanian intra-shelf basin subjected to NE compressional regime. As this ongoing regime increased at Late-Cretaceous and Miocene, it led to more tectonic-driven basin physiography. This paper investigates the areal extent, interaction, and commonalities between the extensional Aptian intra-shelf basin, compressional Late-Cretaceous intra-shelf basin, Late-Cretaceous-Paleogene foreland basin, and Late Oligocene-Miocene salt basin. Methods, Procedures, Process To understand the genesis, driving forces, and distribution of these basins, we used a combination of several large-scale stratigraphic well correlations and seismic, together with age dating, cores, and extensive well information (ADNOC proprietary internal reports). The methodology used this data for detailed mapping of 11 relevant time stratigraphic intervals, placing the mapped architecture in the context of the global eustatic sea level and major geodynamic events of the Arabian Plate. Results, Observations, Conclusions Aptian basin took place as a consequence of environmental/climatic disturbances (Vahrenkamp et al., 2015a). However, environmental factors alone cannot explain isolated carbonate build-ups on salt-related structures at the intra-shelf basin, offshore Abu Dhabi. Subsequently, the emplacement of thrust sheets of Tethyan rocks from NE, and following ophiolite obduction (Searle et al., 1990; Searle, 2007; Searle and Ali, 2009; Searle et al., 2014), established a compressional regime in the Albian?-Cenomanian. This induced tectonic features such as: loading-erosion on eastern Abu Dhabi, isolated carbonate build-ups, and reactivation of a N-S deep-rooted fault (possibly a continuation of Precambrian Amad basement ridge from KSA). This N-S feature was probably the main factor contributing the basin axis change from E-W Aptian trend to N-S position at Cenomanian. Further compression continued into the Coniacian-Santonian, leading to a nascent foreland basin. This compression established a foredeep in eastern Abu Dhabi, separated by a bulge from the northern extension of the eastern Rub’ Al-Khali basin (Ghurab syncline) (Patton and O'Connor, 1988). Numerous paleostructures were developed onshore Abu Dhabi, together with several small patch-reefs on offshore salt growing structures. Campanian exhibits maximum structuration associated to eastern transpression related to Masirah ophiolite obduction during India drift (Johnson et al., 2005, Filbrandt et al., 2006; Gaina et al., 2015). This caused more differentiation of the foredeep, onshore synclines, and northern paleostructures, which continued to cease through Maastrichtian. From Paleocene to Late-Eocene, paleostructure growth intensity continued decreasing and foreland basin hydrological restriction began with the Neotethys closure. Through Oligocene until Burdigalian this situation continued, where the Neotethys closed with the Zagros Orogeny (Sharland et al., 2001), causing a new environmental/climatic disturbances period. These disturbances prevented the continued progradation of the carbonate factory into the foredeep, leading to conspicuous platform-basin differentiation. Additionally, the Zagros orogeny tilted the plate northeastward, dismantling the paleostructures generated at Late-Cenomanian. Finally, during an arid climate in the Burdigalian to Middle-Miocene, the confined Neogene sea filled the foredeep accommodation space with massive evaporites. Novel/Additive Information Little has been published about the outline and architecture of these basins in Abu Dhabi and the detailed circumstances that led to their genesis using subsurface information.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. B259-B268 ◽  
Author(s):  
Janina Kammann ◽  
Alireza Malehmir ◽  
Bojan Brodic ◽  
Mattia Tagliavento ◽  
Lars Stemmerik ◽  
...  

The Chalk Group forms important hydrocarbon reservoirs offshore and water aquifers onshore Denmark. Within a day of fieldwork, a 450 m long reflection seismic profile was acquired onshore in an area in southeast Denmark, where the Chalk Group extends almost to the surface and is approximately 900 m thick. The main objective of the study was to image the complete Chalk Group in high resolution and to study the origin of reflectivity within the different chalk units. A 45 kg accelerated weight-drop source, in combination with dense receiver spacing using microelectromechanical sensors mounted on a streamer and 48 planted geophones, was used for data acquisition. The profile runs subparallel to the cliffs of Stevns, and the recorded signal reaches the base of the Chalk Group at approximately 600 ms. The fully cored 443 m-deep Stevns-1 borehole, which is located at the recorded seismic line, provides excellent control on lithologic and facies changes. Comparison with the borehole data demonstrates that our seismic data set provides a high-resolution image of the internal layering of the Chalk Group. We find that the internal reflection coefficients of the Chalk Group are, in general, small based on wireline-log data. However, the reflected amplitudes are just big enough to be recorded with the receiver setup used, even from the pure chalk beds of the Chalk Group. The reflectivity seen on the high-resolution seismic profile is influenced by occurrences of clay-enriched chalk layers. Flint bands consisting of numerous flint nodules are a characteristic of the uppermost part of the Chalk Group at Stevns. The flint nodules appear to produce significant scattering of the seismic signals, and flint-rich layers appear with diffuse internal reflectivity characteristics. Outcrop-scale mound structures in Danian and Upper Cretaceous outcrops are for the first time seismically resolved.


Sign in / Sign up

Export Citation Format

Share Document