Are submarine and subaerial drainages morphologically distinct?

Geology ◽  
2019 ◽  
Vol 47 (11) ◽  
pp. 1093-1097
Author(s):  
Stephen C. Dobbs ◽  
Tim McHargue ◽  
Matthew A. Malkowski ◽  
Jared T. Gooley ◽  
Chayawan Jaikla ◽  
...  

Abstract The qualitative resemblance between terrestrial and submarine branched valley networks has led to speculation that common underlying processes control their formation. However, quantitative comparisons have been impeded by methodological limitations and coarse resolution in marine systems. We analyze channel concavity and steepness indices of 23 terrestrial and 29 submarine catchments to determine whether their profile morphologies are distinct. Statistical comparisons of these quantities demonstrate that concavity indices in submarine systems are, in general, lower than in subaerial systems, and that submarine tributaries are steeper than their associated mainstem. These differences may reflect distinct drainage formation mechanisms and dynamics of submarine sediment gravity flows as compared to overland flow processes.

1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2021 ◽  
Author(s):  
Guoqiang Peng ◽  
Zhuo Zhang ◽  
Tian Zhang ◽  
Zhiyao Song ◽  
Arif Masrur

Abstract Urban pluvial flash floods have become a matter of widespread concern, as they severely impact people’s lives in urban areas. Hydrological and hydraulic models have been widely used for urban flood management and urban planning. Traditionally, to reduce the complexity of urban flood modelling and simulations, simplification or generalization methods have been used; for example, some models focus on the simulation of overland water flow, and some models focus on the simulation of the water flow in sewer systems. However, the water flow of urban floods includes both overland flow and sewer system flow. The overland flow processes are impacted by many different geographical features in what is an extremely spatially heterogeneous environment. Therefore, this article is based on two widely used models (SWMM and ANUGA) that are coupled to develop a bi-directional method of simulating water flow processes in urban areas. The open source overland flow model uses the unstructured triangular as the spatial discretization scheme. The unstructured triangular-based hydraulic model can be better used to capture the spatial heterogeneity of the urban surfaces. So, the unstructured triangular-based model is an essential condition for heterogeneous feature-based urban flood simulation. The experiments indicate that the proposed coupled model in this article can accurately depict surface waterlogged areas and that the heterogeneous feature-based urban flood model can be used to determine different types of urban flow processes.


2008 ◽  
Vol 10 (3) ◽  
pp. 227-244 ◽  
Author(s):  
Olaf Kolditz ◽  
Jens-Olaf Delfs ◽  
Claudius Bürger ◽  
Martin Beinhorn ◽  
Chan-Hee Park

In this paper we present an object-oriented concept for numerical simulation of multi-field problems for coupled hydrosystem analysis. Individual (flow) processes modelled by a particular partial differential equation, i.e. overland flow by the shallow water equation, variably saturated flow by the Richards equation and saturated flow by the groundwater flow equation, are identified with their corresponding hydrologic compartments such as land surface, vadose zone and aquifers, respectively. The object-oriented framework of the compartment approach allows an uncomplicated coupling of these existing flow models. After a brief outline of the underlying mathematical models we focus on the numerical modelling and coupling of overland flow, variably saturated and groundwater flows via exchange flux terms. As each process object is associated with its own spatial discretisation mesh, temporal time-stepping scheme and appropriate numerical solution procedure. Flow processes in hydrosystems are coupled via their compartment (or process domain) boundaries without giving up the computational necessities and optimisations for the numerical solution of each individual process. However, the coupling requires a bridging of different temporal and spatial scales, which is solved here by the integration of fluxes (spatially and temporally). In closing we present three application examples: a benchmark test for overland flow on an infiltrating surface and two case studies – at the Borden site in Canada and the Beerze–Reusel drainage basin in the Netherlands.


2019 ◽  
Vol 7 (1) ◽  
pp. 5 ◽  
Author(s):  
Svetlana Kostic ◽  
Daniele Casalbore ◽  
Francesco Chiocci ◽  
Jörg Lang ◽  
Jutta Winsemann

Upper-flow-regime bedforms and their role in the evolution of marine and lacustrine deltas are not well understood. Wave-like undulations on delta foresets are by far the most commonly reported bedforms on deltas and it will take time before many of these features get identified as upper-flow-regime bedforms. This study aims at: (1) Providing a summary of our knowledge to date on deltaic bedforms emplaced by sediment gravity flows; (2) illustrating that these features are most likely transitional upper-flow-regime bedforms; and (3) using field case studies of two markedly different deltas in order to examine their role in the evolution of deltas. The study combines numerical analysis with digital elevation models, outcrop, borehole, and high-resolution seismic data. The Mazzarrà river delta in the Gulf of Patti, Italy, is selected to show that upper-flow-regime bedforms in gullies can be linked to the onset, growth, and evolution of marine deltas via processes of gully initiation, filling, and maintenance. Ice-marginal lacustrine deltas in Germany are selected as they illustrate the importance of unconfined upper-flow-regime bedforms in the onset and evolution of distinct delta morphologies under different lake-level trends.


2019 ◽  
Vol 32 (10) ◽  
pp. 2823-2841 ◽  
Author(s):  
Leone Cavicchia ◽  
Acacia Pepler ◽  
Andrew Dowdy ◽  
Kevin Walsh

Abstract The subtropical part of the eastern Australian seaboard experiences intense cyclonic activity. The severe damage caused by the intense storms in the region, known as east coast lows (ECLs), has motivated a number of recent studies. Cyclones in this region appear to be driven by a combination of different (barotropic and baroclinic) formation mechanisms, consistent with the view emerging in the last decades that cyclones span a continuous spectrum of dynamical structures, with the barotropically driven tropical cyclone and the baroclinically driven extratropical cyclone being only the extremes of such a spectrum. In this work we revisit the climatology of cyclone occurrence in the subtropical east coast of Australia as seen in a global reanalysis, systematically applying classification criteria based on the cyclone vertical structure and thermal core. Moreover, we investigate the underlying processes driving the cyclone rapid intensification by means of an atmospheric limited-area energetics analysis. We show that ECLs have different spatial patterns according to the cyclone thermal structure, with the fraction of hybrid cyclones being larger toward the tropics and closer to the coast. Moreover, we find that explosively deepening cyclones in this region are driven by a different combination of processes with respect to the global case, with barotropic processes in the surrounding environment having a more dominant role in the energetics of cyclone rapid intensification. The findings of this work contribute to understanding the physical processes underlying the formation and intensification of Australian east coast lows and the associated coastal damage and risk.


2004 ◽  
Vol 40 (2) ◽  
pp. 159-174 ◽  
Author(s):  
C. J. Banks ◽  
J. A. Winchester

SynopsisRecords of ancient environments and past basin histories can be preserved in metasedimentary successions, despite their subsequent deformation and metamorphism. In the Central Scottish Highlands SE of Loch Ness, the Garva Bridge Psammite and the Glen Buck Pebbly Psammite Formations (hitherto included within the Glenshirra Subgroup at the base of the Neoproterozoic Grampian Group) represent a continuum of alluvial fan to shallow water sediments, deposited in a SE thinning fan-delta clastic wedge. These sediments, derived from an uplifted granitoid hinterland to the west, contrast with the overlying marine sedimentary rocks of the Corrieyairack Subgroup, which were deposited by sediment gravity flows within a submarine slope setting. The Glen Buck Pebbly Psammite/Garva Bridge Psammite Formations and the Corrieyairack Subgroup represent two genetic stratigraphic sequences divided by a sharp sequence boundary that records a major reorganization in basin architecture. Hence, we propose that the Garva Bridge Psammite and Glen Buck Pebbly Psammite Formations be included within a separate Glenshirra Group, genetically unrelated to either the marine deposits of the immediately overlying Grampian Group or the earlier, locally migmatized (Moinian?) basement to the Central Highlands. The Glenshirra Group thus represents the earliest phase of post-Knoydartian extension, predating the main Dalradian basin development.


Sign in / Sign up

Export Citation Format

Share Document