Climatically driven displacement on the Eglington fault, Las Vegas, Nevada, USA

Geology ◽  
2020 ◽  
Vol 48 (6) ◽  
pp. 574-578
Author(s):  
Kathleen B. Springer ◽  
Jeffrey S. Pigati

Abstract The Eglington fault is one of several intrabasinal faults in the Las Vegas Valley, Nevada, USA, and is the only one recognized as a source for significant earthquakes. Its broad warp displaces Late Pleistocene spring deposits of the Las Vegas Formation, which record hydrologic fluctuations that occurred in response to millennial- and submillennial-scale climate oscillations throughout the late Quaternary. The sediments allow us to constrain the timing of displacement on the Eglington fault and identify hydrologic changes that are temporally coincident with that event. The fault deforms deposits that represent widespread marshes that filled the valley between ca. 31.7 and 27.6 ka. These marshes desiccated abruptly in response to warming and groundwater lowering during Dansgaard-Oeschger (D-O) events 4 and 3, resulting in the formation of a pervasive, hard carbonate cap by 27.0 ka. Vertical offset by as much as 4.2 m occurred after the cap hardened, and most likely after younger marshes desiccated irreversibly due to a sudden depression of the water table during D-O event 2, beginning at 23.3 ka. The timing of displacement is further constrained to before 19.5 ka as evidenced by undeformed spring deposits that are inset into the incised topography of the warp. Coulomb stress calculations validate the hypothesis that the substantial groundwater decline during D-O event 2 unclamped the fault through unloading of vertical stress of the water column. The synchroneity of this abrupt hydrologic change and displacement of the Eglington fault suggests that climatically modulated tectonics operated in the Las Vegas Valley during the late Quaternary.

2017 ◽  
Vol 4 ◽  
pp. 55-98
Author(s):  
Kathleen Springer ◽  
Jeffrey Pigati ◽  
Eric Scott

Tule Springs Fossil Beds National Monument (TUSK) preserves 22,650 acres of the upper Las Vegas Wash in the northern Las Vegas Valley (Nevada, USA). TUSK is home to extensive and stratigraphically complex groundwater discharge (GWD) deposits, called the Las Vegas Formation, which represent springs and desert wetlands that covered much of the valley during the late Quaternary. The GWD deposits record hydrologic changes that occurred here in a dynamic and temporally congruent response to abrupt climatic oscillations over the last ~300 ka (thousands of years). The deposits also entomb the Tule Springs Local Fauna (TSLF), one of the most significant late Pleistocene (Rancholabrean) vertebrate assemblages in the American Southwest. The TSLF is both prolific and diverse, and includes a large mammal assemblage dominated by Mammuthus columbi and Camelops hesternus. Two (and possibly three) distinct species of Equus, two species of Bison, Panthera atrox, Smilodon fatalis, Canis dirus, Megalonyx jeffersonii, and Nothrotheriops shastensis are also present, and newly recognized faunal components include micromammals, amphibians, snakes, and birds. Invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. This field compendium highlights the faunal assemblage in the classic stratigraphic sequences of the Las Vegas Formation within TUSK, emphasizes the significant hydrologic changes that occurred in the area during the recent geologic past, and examines the subsequent and repeated effect of rapid climate change on the local desert wetland ecosystem.


2017 ◽  
Vol 4 ◽  
pp. 55-98
Author(s):  
Kathleen B. Springer ◽  
Jeffrey S. Pigati ◽  
Eric Scott

Tule Springs Fossil Beds National Monument (TUSK) preserves 22,650 acres of the upper Las Vegas Wash in the northern Las Vegas Valley (Nevada, USA). TUSK is home to extensive and stratigraphically complex groundwater discharge (GWD) deposits, called the Las Vegas Formation, which represent springs and desert wetlands that covered much of the valley during the late Quaternary. The GWD deposits record hydrologic changes that occurred here in a dynamic and temporally congruent response to abrupt climatic oscillations over the last ~300 ka (thousands of years). The deposits also entomb the Tule Springs Local Fauna (TSLF), one of the most significant late Pleistocene (Rancholabrean) vertebrate assemblages in the American Southwest. The TSLF is both prolific and diverse, and includes a large mammal assemblage dominated by Mammuthus columbi and Camelops hesternus. Two (and possibly three) distinct species of Equus, two species of Bison, Panthera atrox, Smilodon fatalis, Canis dirus, Megalonyx jeffersonii, and Nothrotheriops shastensis are also present, and newly recognized faunal components include micromammals, amphibians, snakes, and birds. Invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. This field compendium highlights the faunal assemblage in the classic stratigraphic sequences of the Las Vegas Formation within TUSK, emphasizes the significant hydrologic changes that occurred in the area during the recent geologic past, and examines the subsequent and repeated effect of rapid climate change on the local desert wetland ecosystem.


2015 ◽  
Vol 112 (47) ◽  
pp. 14522-14526 ◽  
Author(s):  
Kathleen B. Springer ◽  
Craig R. Manker ◽  
Jeffrey S. Pigati

Desert wetlands are keystone ecosystems in arid environments and are preserved in the geologic record as groundwater discharge (GWD) deposits. GWD deposits are inherently discontinuous and stratigraphically complex, which has limited our understanding of how desert wetlands responded to past episodes of rapid climate change. Previous studies have shown that wetlands responded to climate change on glacial to interglacial timescales, but their sensitivity to short-lived climate perturbations is largely unknown. Here, we show that GWD deposits in the Las Vegas Valley (southern Nevada, United States) provide a detailed and nearly complete record of dynamic hydrologic changes during the past 35 ka (thousands of calibrated 14C years before present), including cycles of wetland expansion and contraction that correlate tightly with climatic oscillations recorded in the Greenland ice cores. Cessation of discharge associated with rapid warming events resulted in the collapse of entire wetland systems in the Las Vegas Valley at multiple times during the late Quaternary. On average, drought-like conditions, as recorded by widespread erosion and the formation of desert soils, lasted for a few centuries. This record illustrates the vulnerability of desert wetland flora and fauna to abrupt climate change. It also shows that GWD deposits can be used to reconstruct paleohydrologic conditions at millennial to submillennial timescales and informs conservation efforts aimed at protecting these fragile ecosystems in the face of anthropogenic warming.


1986 ◽  
Vol 26 (3) ◽  
pp. 340-357 ◽  
Author(s):  
Jay Quade

Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.


Tectonics ◽  
1994 ◽  
Vol 13 (4) ◽  
pp. 769-788 ◽  
Author(s):  
Leslie J. Sonder ◽  
Craig H. Jones ◽  
Stephen L. Salyards ◽  
Kathleen M. Murphy

Sign in / Sign up

Export Citation Format

Share Document