lake mead
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 20)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Author(s):  
K. Wayne Forsythe ◽  
Barbara Schatz ◽  
Stephen J. Swales ◽  
Lisa-Jen Ferrato ◽  
David M. Atkinson

For most of the last decade, the south-western portion of the United States has experienced a severe and enduring drought. This has caused serious concerns about water supply and management in the region. In this research, 30 orthorectified Landsat satellite images from the United States Geological Service (USGS) Earth Explorer archive were analyzed for the 1972 to 2009 period. The images encompassed Lake Mead (a major reservoir in this region) and were examined for changes in water surface area. Decadal lake area minimums/maximums were achieved in 1972/1979, 1981/1988, 1991/1998, and 2009/2000. The minimum lake area extent occurred in 2009 (356.4 km2), while the maximum occurred in 1998 (590.6 km2). Variable trends in water level and lake area were observed throughout the analysis period, however progressively lower values were observed since 2000. The Landsat derived lake areas show a very strong relationship with actual measured water levels at the Hoover Dam. Yearly water level variations at the dam vary minimally from the satellite derived estimates. A complete (yearly) record of satellite images may have helped to reduce the slight deviations in the time series.


2021 ◽  
Author(s):  
K. Wayne Forsythe ◽  
Barbara Schatz ◽  
Stephen J. Swales ◽  
Lisa-Jen Ferrato ◽  
David M. Atkinson

For most of the last decade, the south-western portion of the United States has experienced a severe and enduring drought. This has caused serious concerns about water supply and management in the region. In this research, 30 orthorectified Landsat satellite images from the United States Geological Service (USGS) Earth Explorer archive were analyzed for the 1972 to 2009 period. The images encompassed Lake Mead (a major reservoir in this region) and were examined for changes in water surface area. Decadal lake area minimums/maximums were achieved in 1972/1979, 1981/1988, 1991/1998, and 2009/2000. The minimum lake area extent occurred in 2009 (356.4 km2), while the maximum occurred in 1998 (590.6 km2). Variable trends in water level and lake area were observed throughout the analysis period, however progressively lower values were observed since 2000. The Landsat derived lake areas show a very strong relationship with actual measured water levels at the Hoover Dam. Yearly water level variations at the dam vary minimally from the satellite derived estimates. A complete (yearly) record of satellite images may have helped to reduce the slight deviations in the time series.


2021 ◽  
Vol 13 (3) ◽  
pp. 406
Author(s):  
Mehdi Darvishi ◽  
Georgia Destouni ◽  
Saeid Aminjafari ◽  
Fernando Jaramillo

Changes in subsurface water resources might alter the surrounding ground by generating subsidence or uplift, depending on geological and hydrogeological site characteristics. Improved understanding of the relationships between surface water storage and ground deformation is important for design and maintenance of hydraulic facilities and ground stability. Here, we construct one of the longest series of Interferometric Synthetic Aperture Radar (InSAR) to date, over twenty-five years, to study the relationships between water level changes and ground surface deformation in the surroundings of Lake Mead, United States, and at the site of the Hoover Dam. We use the Small Baseline Subset (SBAS) and Permanent scatterer interferometry (PSI) techniques over 177 SAR data, encompassing different SAR sensors including ERS1/2, Envisat, ALOS (PALSAR), and Sentinel-1(S1). We perform a cross-sensor examination of the relationship between water level changes and ground displacement. We found a negative relationship between water level change and ground deformation around the reservoir that was consistent across all sensors. The negative relationship was evident from the long-term changes in water level and deformation occurring from 1995 to 2014, and also from the intra-annual oscillations of the later period, 2014 to 2019, both around the reservoir and at the dam. These results suggest an elastic response of the ground surface to changes in water storage in the reservoir, both at the dam site and around the reservoir. Our study illustrates how InSAR-derived ground deformations can be consistent in time across sensors, showing the potential of detecting longer time-series of ground deformation.


2021 ◽  
Vol 12 (4) ◽  
pp. 812-827
Author(s):  
Samantha Tracy ◽  
Julie Day ◽  
Julianne Renner ◽  
Mark Sappington

2020 ◽  
Vol 12 (23) ◽  
pp. 4004
Author(s):  
Nan Xu ◽  
Yue Ma ◽  
Wenhao Zhang ◽  
Xiao Hua Wang ◽  
Fanlin Yang ◽  
...  

With new Ice, Cloud, and land Elevation Satellite (ICESat)-2 lidar (Light detection and ranging) datasets and classical Landsat imagery, a method was proposed to monitor annual changes of lake water levels and volumes for 35 years dated back to 1980s. Based on the proposed method, the annual water levels and volumes of Lake Mead in the USA over 1984–2018 were obtained using only two-year measurements of the ICESat-2 altimetry datasets and all available Landsat observations from 1984 to 2018. During the study period, the estimated annual water levels of Lake Mead agreed well with the in situ measurements, i.e., the R2 and RMSE (Root-mean-square error) were 1.00 and 1.06 m, respectively, and the change rates of lake water levels calculated by our method and the in situ data were −1.36 km3/year and −1.29 km3/year, respectively. The annual water volumes of Lake Mead also agreed well with in situ measurements, i.e., the R2 and RMSE were 1.00 and 0.36 km3, respectively, and the change rates of lake water volumes calculated by our method and in situ data were −0.57 km3/year and −0.58 km3/year, respectively. We found that the ICESat-2 exhibits a great potential to accurately characterize the Earth’s surface topography and can capture signal photons reflected from underwater bottoms up to approximately 10 m in Lake Mead. Using the ICESat-2 datasets with a global coverage and our method, accurately monitoring changes of annual water levels/volumes of lakes—which have good water qualities and experienced significant water level changes—is no longer limited by the time span of the available satellite altimetry datasets, and is potentially achievable over a long-term period.


2020 ◽  
Author(s):  
Julie Evans ◽  
Kendra Sikes ◽  
Jamie Ratchford

Vegetation inventory and mapping is a process to document the composition, distribution and abundance of vegetation types across the landscape. The National Park Service’s (NPS) Inventory and Monitoring (I&M) program has determined vegetation inventory and mapping to be an important resource for parks; it is one of 12 baseline inventories of natural resources to be completed for all 270 national parks within the NPS I&M program. The Mojave Desert Network Inventory & Monitoring (MOJN I&M) began its process of vegetation inventory in 2009 for four park units as follows: Lake Mead National Recreation Area (LAKE), Mojave National Preserve (MOJA), Castle Mountains National Monument (CAMO), and Death Valley National Park (DEVA). Mapping is a multi-step and multi-year process involving skills and interactions of several parties, including NPS, with a field ecology team, a classification team, and a mapping team. This process allows for compiling existing vegetation data, collecting new data to fill in gaps, and analyzing the data to develop a classification that then informs the mapping. The final products of this process include a vegetation classification, ecological descriptions and field keys of the vegetation types, and geospatial vegetation maps based on the classification. In this report, we present the narrative and results of the sampling and classification effort. In three other associated reports (Evens et al. 2020a, 2020b, 2020c) are the ecological descriptions and field keys. The resulting products of the vegetation mapping efforts are, or will be, presented in separate reports: mapping at LAKE was completed in 2016, mapping at MOJA and CAMO will be completed in 2020, and mapping at DEVA will occur in 2021. The California Native Plant Society (CNPS) and NatureServe, the classification team, have completed the vegetation classification for these four park units, with field keys and descriptions of the vegetation types developed at the alliance level per the U.S. National Vegetation Classification (USNVC). We have compiled approximately 9,000 existing and new vegetation data records into digital databases in Microsoft Access. The resulting classification and descriptions include approximately 105 alliances and landform types, and over 240 associations. CNPS also has assisted the mapping teams during map reconnaissance visits, follow-up on interpreting vegetation patterns, and general support for the geospatial vegetation maps being produced. A variety of alliances and associations occur in the four park units. Per park, the classification represents approximately 50 alliances at LAKE, 65 at MOJA and CAMO, and 85 at DEVA. Several riparian alliances or associations that are somewhat rare (ranked globally as G3) include shrublands of Pluchea sericea, meadow associations with Distichlis spicata and Juncus cooperi, and woodland associations of Salix laevigata and Prosopis pubescens along playas, streams, and springs. Other rare to somewhat rare types (G2 to G3) include shrubland stands with Eriogonum heermannii, Buddleja utahensis, Mortonia utahensis, and Salvia funerea on rocky calcareous slopes that occur sporadically in LAKE to MOJA and DEVA. Types that are globally rare (G1) include the associations of Swallenia alexandrae on sand dunes and Hecastocleis shockleyi on rocky calcareous slopes in DEVA. Two USNVC vegetation groups hold the highest number of alliances: 1) Warm Semi-Desert Shrub & Herb Dry Wash & Colluvial Slope Group (G541) has nine alliances, and 2) Mojave Mid-Elevation Mixed Desert Scrub Group (G296) has thirteen alliances. These two groups contribute significantly to the diversity of vegetation along alluvial washes and mid-elevation transition zones.


Sign in / Sign up

Export Citation Format

Share Document