scholarly journals Supplemental Material: Minimal net incision of the northern Sierra Nevada (California, USA) since the Eocene–early Oligocene

Author(s):  
Emmanuel Gabet ◽  
Daniel Miggins

Site identification, error analysis, and Ar/Ar dating.<br>

Geology ◽  
2020 ◽  
Author(s):  
Emmanuel J. Gabet ◽  
Daniel P. Miggins

In the caption of Figure 1, panel D, the longitude is incorrect. The correct longitude is 120.1058°W. See PDF file for details.


2003 ◽  
Vol 15 (5) ◽  
pp. 571-578 ◽  
Author(s):  
Satoshi Tadokoro ◽  
◽  
Richard Verhoeven ◽  
Ulrike Zwiers ◽  
Manfred Hiller ◽  
...  

Cable-driven parallel robots are being developed for rescue operations in large-scale earthquake disasters. This paper proposes an identification method of kinematic parameters for the installation, such as the position of cable fixture by initializing motion on site. This problem is unique to robots in natural fields, such as disaster sites because the environment is not structured. On the basis of identification error analysis and simulation, the optimal number of measurement points and the size of an identification reference frame are obtained.


Automatica ◽  
2019 ◽  
Vol 101 ◽  
pp. 269-279 ◽  
Author(s):  
Yuanlong Wang ◽  
Qi Yin ◽  
Daoyi Dong ◽  
Bo Qi ◽  
Ian R. Petersen ◽  
...  

Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 1023-1027
Author(s):  
Emmanuel J. Gabet ◽  
Daniel P. Miggins

Abstract Significant late Cenozoic uplift (&gt;1000 m) of the northern half of the Sierra Nevada (California, USA), a mountain range in the North American Cordillera, has been a dominant paradigm over the past century. This paradigm has been supported by evidence suggesting that in response to this recent uplift, the range’s deep canyons were incised in the past 3–4 m.y. However, paleochannel elevations compiled from a mining report and geological maps demonstrate that while some modern rivers have incised 560 m below their Eocene–early Oligocene riverbeds, incision by others has been &lt;300 m. For example, Eocene–early Oligocene fluvial gravels can be found just 161 m above the modern channel deep within the canyon of the South Fork American River. We conclude that the initiation of late Cenozoic incision was due to a resumption of a period of downcutting that was interrupted in the Eocene when the rivers were buried by fluvial sediment and by later volcanic deposits. This interpretation challenges the hypothesis that recent uplift was responsible for deep canyon incision. Correctly identifying the causes of recent incision in the northern Sierra Nevada has important implications for understanding the geological history of the North American Cordillera because the range is hypothesized to have been the western ramp of the Nevadaplano.


Author(s):  
Alan Graham

During the Middle Eocene through the Early Miocene, erosion of the Appalachian Mountains exceeded uplift and there was a net reduction in elevation. In the Rocky Mountains uplift continued through the Middle Eocene (end of the Laramide orogeny), waned in the Middle Tertiary, and then increased beginning at about 10 Ma. Earlier reconstructions placed paleoelevations in the Rocky Mountains during the Middle Eocene through the Early Miocene at approximately half the present relief. The maximum elevation in the Front Ranges during the latest Eocene was estimated at ~2500 m (~8000 ft; MacGinitie, 1953). Recent approximations are for nearly modern elevations in several areas by the Eocene-Oligocene. Extensive Eocene volcanism deposited ash and blocked drainage systems, augmenting uplift and facilitating the preservation of extensive fossil floras and faunas. In the far west the beginning of Tertiary volcanism in the Sierra Nevada is dated at ~ 33 Ma near the Eocene-Oligocene boundary. A drying trend becomes evident in the Middle Eocene and reduced moisture, along with the waning of volcanic activity in the Oligocene, restricted conditions favorable to fossilization. The number of Oligocene floras in the northern Rocky Mountains is considerably fewer than in younger deposits to the west. In the absence of extensive plate reorganization and orogeny, CO2 concentration decreased, which contributed to a temperature decline that continued through the Cenozoic and intensified in the Late Tertiary. Recall from Chapter 2 (sections on orogeny and volcanism) that uplift plays a role in determining long-term climate by creating rainshadows, altering atmospheric circulation patterns, and increasing the erosion of silicate rocks that causes a drawdown of CO2. This allows heat to escape from the troposphere and results in lower temperatures. Marine benthic temperatures were ~10°C in the early Late Eocene and ~2°C near the Eocene-Oligocene boundary, assuming an essentially ice-free Earth during that time, and increased to ~5-6°Cnear the end of the Early Miocene. Temperatures over land in the midnorthern latitudes are estimated to have dropped by ~12°C between the Late Eocene and Early Oligocene (Wolfe, 1992a).


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


1995 ◽  
Vol 11 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Dietmar Heubrock

Performance on a German version of the Rey Auditory-Verbal Learning Test (AVLT) was investigated for 64 juvenile patients who were subdivided in 6 clinical groups. In addition to standard evaluation of AVLT protocols which is usually confined to items recalled correctly, an error analysis was performed. Differentiating between total errors (TE), repetition errors (RE), and misnamings (ME), substantial differences between clinical groups could be demonstrated. It is argued that error analysis of verbal memory and learning enriches the understanding of neuropsychological syndromes, and provides additional information for diagnostic and clinical use. Thus, it is possible to gain a more accurate picture so that patients can be appropriately retrained, and research into the functional causes of memory and learning disorders can be intensified.


Sign in / Sign up

Export Citation Format

Share Document