scholarly journals Supplemental Material: Early Pleistocene climate-induced erosion of the Alaska Range formed the Nenana Gravel

2021 ◽  
Author(s):  
Rachel Sortor ◽  
et al.

Expanded methods, discussion of outliers, sample data and supplemental figures.<br>

2021 ◽  
Author(s):  
Rachel Sortor ◽  
et al.

Expanded methods, discussion of outliers, sample data and supplemental figures.<br>


Geology ◽  
2021 ◽  
Author(s):  
Rachel N. Sortor ◽  
Brent M. Goehring ◽  
Sean P. Bemis ◽  
Chester A. Ruleman ◽  
Marc W. Caffee ◽  
...  

The Pliocene-Pleistocene transition resulted in extensive global cooling and glaciation, but isolating this climate signal within erosion and exhumation responses in tectonically active regimes can be difficult. The Nenana Gravel is a foreland basin deposit in the northern foothills of the Alaska Range (USA) that has long been linked to unroofing of the Alaska Range starting ca. 6 Ma. Using 26Al/10Be cosmogenic nuclide burial dating, we determined the timing of deposition of the Nenana Gravel and an overlying remnant of the first glacial advance into the northern foothills. Our results indicate that initial deposition of the Nenana Gravel occurred at the onset of the Pleistocene ca. 2.34 Ma and continued until at least ca. 1.7 Ma. The timing of initial deposition is correlative with expansion of the Cordilleran ice sheet, suggesting that the deposit formed due to increased glacial erosion in the Alaska Range. Abandonment of Nenana Gravel deposition occurred prior to the first glaciation extending into the northern foothills. This glaciation was hypothesized to have occurred ca. 1.5 Ma, but we found that it occurred ca. 0.39 Ma. A Pleistocene age for the Nenana Gravel and marine oxygen isotope stage 10 age for the oldest glaciation of the foothills necessitate reanalysis of incision and tectonic rates in the northern foothills of the Alaska Range, in addition to a shift in perspective on how these deposits fit into the climatic and tectonic history of the region.


2021 ◽  
Author(s):  
Nicholas Golledge

&lt;p&gt;During the Pleistocene (approximately 2.6 Ma to present) glacial to interglacial climate variability evolved from dominantly 40 kyr cyclicity (Early Pleistocene) to 100 kyr cyclicity (Late Pleistocene to present). Three aspects of this period remain poorly understood: Why did the dominant frequency of climate oscillation change, given that no major changes in orbital forcing occurred? Why are the longer glacial cycles of the Late Pleistocene characterised by a more asymmetric form with abrupt terminations? And how can the Late Pleistocene climate be controlled by 100 kyr cyclicity when astronomical forcings of this frequency are so much weaker than those operating on shorter periods? Here we show that the decreasing frequency and increasing asymmetry that characterise Late Pleistocene ice age cycles both emerge naturally in dynamical systems in response to increasing system complexity, with collapse events (terminations) occuring only once a critical state has been reached. Using insights from network theory we propose that evolution to a state of criticality involves progressive coupling between climate system 'nodes', which ultimately allows any component of the climate system to trigger a globally synchronous termination. We propose that the climate state is synchronised at the 100 kyr frequency, rather than at shorter periods, because eccentricity-driven insolation variability controls mean temperature change globally, whereas shorter-period astronomical forcings only affect the spatial pattern of thermal forcing and thus do not favour global synchronisation. This dynamical systems framework extends and complements existing theories by accomodating the differing mechanistic interpretations of previous studies without conflict.&lt;/p&gt;


2007 ◽  
Vol 67 (2) ◽  
pp. 264-274 ◽  
Author(s):  
Sébastien Joannin ◽  
Frédéric Quillévéré ◽  
Jean-Pierre Suc ◽  
Christophe Lécuyer ◽  
François Martineau

AbstractVegetation inherited from a Pliocene subtropical climate evolved through obliquity oscillations and global cooling leading to modern conditions. An integrated, highly time-resolved record of pollen and stable isotopes (δ18O and δ13C of Globigerina bulloides) was obtained to understand vegetation responses to Early Pleistocene climate changes. Continental and marine responses are compared in the Central Mediterranean region with a particular consideration of environmental changes during anoxic events.Pollen data illustrate vegetation dynamics as follows: [1] development of mesothermic elements (warm and humid conditions); [2] expansion of mid- and high-altitude elements (cooler but still humid conditions); and [3] strengthening of steppe and herb elements (cooler and dry conditions). These successions correlate with precession. δ18O variations recorded by Globigerina bulloides define two cycles (MIS 43-40) related to obliquity. At northern low- to mid-latitudes, the pollen signal records temperature and wetness changes related to precession even during global climate changes induced by obliquity. This may result in unexpected increasing wetness during glacial periods, which has to be considered specific to the Central and Eastern Mediterranean region. Lastly, an analysis of anoxic events reveals that enhanced runoff is indicated by increasing frequency of the riparian trees Liquidambar and Zelkova.


2018 ◽  
Vol 89 (2) ◽  
pp. 533-562 ◽  
Author(s):  
Gaia Crippa ◽  
Andrea Baucon ◽  
Fabrizio Felletti ◽  
Gianluca Raineri ◽  
Daniele Scarponi

AbstractThe Arda River marine succession (Italy) is an excellent site to apply an integrated approach to paleoenvironmental reconstructions, combining the results of sedimentology, body fossil paleontology, and ichnology to unravel the sedimentary evolution of a complex marine setting in the frame of early Pleistocene climate change and tectonic activity. The succession represents a subaqueous extension of a fluvial system, originated during phases of advance of fan deltas affected by high-density flows triggered by river floods, and overlain by continental conglomerates, indicating a relative sea level fall and the establishment of a continental environment. An overall regressive trend is observed through the section, from prodelta to delta front and intertidal settings. The hydrodynamic energy and the sedimentation rate are not constant through the section, but they are influenced by hyperpycnal flows, whose sediments were mainly supplied by an increase in Apennine uplift and erosion, especially after 1.80 Ma. The Arda section documents the same evolutionary history of coeval successions in the Paleo-Adriatic region, as well as the climatic changes of the early Pleistocene. The different approaches used complement quite well one another, giving strength and robustness to the obtained results.


2014 ◽  
Vol 81 (3) ◽  
pp. 424-432 ◽  
Author(s):  
Hong Chang ◽  
Zhisheng An ◽  
Weiguo Liu ◽  
Hong Ao ◽  
Xiaoke Qiang ◽  
...  

AbstractIt has been proposed that within the Tarim Basin tectonic activity has been limited since Triassic time. However, on the basis of magnetostratigraphy from the eastern Tarim Basin, which defines the chronology of sedimentation and structural evolution of the basin, we show that the basin interior has been uplifted and partitioned during Quaternary. The magnetostratigraphy was constructed from 2228 samples that yielded acceptable inclination values. Characteristic remnant magnetization (ChRM) with both normal (N1–N11) and reversed (R1–R11) polarity was isolated by thermal demagnetization. The data correlate best with polarity chrons C3r to C1n, which range from 5.39 Ma to recent on the geological time scale 2004 (GTS2004). An abrupt decrease in the sedimentation rate is observed at 1.77 Ma in the Ls1 core. This change does not overlap with known Pleistocene climate-change events. We attribute this sedimentation rate decrease to a structurally controlled local decrease in accommodation space where basin basement uplifts occur. This period of sedimentary environmental change reveals that structural partitioning in the basement of the Tarim Basin occurred since ~ 1.77 Ma, and we speculate that tilting of the Southeast Uplift (a sub-basin unit) within the Tarim Basin began in early Pleistocene time.


2010 ◽  
Vol 291 (1-4) ◽  
pp. 149-158 ◽  
Author(s):  
Sébastien Joannin ◽  
Jean-Jacques Cornée ◽  
Philippe Münch ◽  
Michel Fornari ◽  
Iuliana Vasiliev ◽  
...  

2000 ◽  
Vol 54 (2) ◽  
pp. 198-205 ◽  
Author(s):  
Jun Chen ◽  
Junfeng Ji ◽  
Yang Chen ◽  
Zhisheng An ◽  
John A. Dearing ◽  
...  

Rb concentrations, analyzed at 20-cm intervals from the Luochuan sequence of loess and paleosols, are sensitive to the loess–paleosol alternation controlled by monsoon climate. Because it is geochemically immobile, Rb can be well preserved in the loess–paleosol sequence after deposition, and its concentration depends mainly on properties of the winter monsoon-blown dust and on intensity of the summer monsoon-induced pedogenesis. A curvilinear relation has been developed between the measured Rb-concentration and the apparent sedimentation rate for the last glacial–interglacial cycle. This relation provides a time scale that corresponds well with the presently accepted ages for paleomagnetic reversals of Brunhes/Matuyama and Jaramillo events. With allowance for reduced Rb concentrations caused by early Pleistocene climate, the Rb-based time scale is also consistent with the boundary ages of other major paleomagnetic reversals of the past 2.58 myr.


Sign in / Sign up

Export Citation Format

Share Document