scholarly journals Smartphone: An alternative to ground control points for orienting virtual outcrop models and assessing their quality

Geosphere ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 2043-2052 ◽  
Author(s):  
Stefano Tavani ◽  
Amerigo Corradetti ◽  
Pablo Granado ◽  
Marco Snidero ◽  
Thomas D. Seers ◽  
...  

Abstract The application of structure from motion–multiview stereo (SfM-MVS) photogrammetry to map metric- to hectometric-scale exposures facilitates the production of three-dimensional (3-D) surface reconstructions with centimeter resolution and range error. In order to be useful for geospatial data interrogation, models must be correctly located, scaled, and oriented, which typically requires the geolocation of manually positioned ground control points with survey-grade accuracy. The cost and operational complexity of portable tools capable of achieving such positional accuracy and precision is a major obstacle in the routine deployment of SfM-MVS photogrammetry in many fields, including geological fieldwork. Here, we propose a procedure to overcome this limitation and to produce satisfactorily oriented models, which involves the use of photo orientation information recorded by smartphones. Photos captured with smartphones are used to: (1) build test models for evaluating the accuracy of the method, and (2) build smartphone-derived models of outcrops, used to reference higher-resolution models reconstructed from image data collected using digital single-lens reflex (DSLR) and mirrorless cameras. Our results are encouraging and indicate that the proposed workflow can produce registrations with high relative accuracies using consumer-grade smartphones. We also find that comparison between measured and estimated photo orientation can be successfully used to detect errors and distortions within the 3-D models.

Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Margaret Kalacska ◽  
Oliver Lucanus ◽  
J. Pablo Arroyo-Mora ◽  
Étienne Laliberté ◽  
Kathryn Elmer ◽  
...  

The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D surfaces (e.g., digital elevation models). The horizontal and vertical positional accuracies (x, y and z) of these products in general, rely heavily on the use of ground control points (GCPs). However, for many applications, the use of GCPs is not possible. Here we tested 14 UASs to assess the positional and within-model accuracy of SfM-MVS reconstructions of low-relief landscapes without GCPs ranging from consumer to enterprise-grade vertical takeoff and landing (VTOL) platforms. We found that high positional accuracy is not necessarily related to the platform cost or grade, rather the most important aspect is the use of post-processing kinetic (PPK) or real-time kinetic (RTK) solutions for geotagging the photographs. SfM-MVS products generated from UAS with onboard geotagging, regardless of grade, results in greater positional accuracies and lower within-model errors. We conclude that where repeatability and adherence to a high level of accuracy are needed, only RTK and PPK systems should be used without GCPs.


Drones ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 15 ◽  
Author(s):  
Salvatore Manfreda ◽  
Petr Dvorak ◽  
Jana Mullerova ◽  
Sorin Herban ◽  
Pietro Vuono ◽  
...  

Small unmanned aerial systems (UASs) equipped with an optical camera are a cost-effective strategy for topographic surveys. These low-cost UASs can provide useful information for three-dimensional (3D) reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of high-quality topographic models, careful consideration of the flight mode and proper distribution of ground control points are required. To this end, a commercial UAS was adopted to monitor a small earthen dam using different combinations of flight configurations and by adopting a variable number of ground control points (GCPs). The results highlight that optimization of both the choice and combination of flight plans can reduce the relative error of the 3D model to within two meters without the need to include GCPs. However, the use of GCPs greatly improved the quality of the topographic survey, reducing error to the order of a few centimeters. The combined use of images extracted from two flights, one with a camera mounted at nadir and the second with a 20° angle, was found to be beneficial for increasing the overall accuracy of the 3D model and especially the vertical precision.


1966 ◽  
Vol 20 (1) ◽  
pp. 23-32
Author(s):  
J. Somogyi*

This paper describes a method of strip adjustment by means of linear three-dimensional transformations applied to the individual models. The first and the last model are transformed independently, using at least three ground-control points. The intermediate models are transformed in a manner that minimizes the jumps in scale, azimuth and tilt, and enforces the fit at intermediate ground-control points. Coordinate connections are made at the centers of gravity of the carryover points. The results of the adjustment of two short strips of 11 and 12 models are shown.


Author(s):  
P. Fanta-Jende ◽  
F. Nex ◽  
M. Gerke ◽  
J. Lijnen ◽  
G. Vosselman

<p><strong>Abstract.</strong> Mobile mapping enables highly accurate as well as high-resolution image data capture at low cost and high speed. As a terrestrial acquisition technique predominately employed in urban, and thus built-up areas, non-line-of-sight and multipath effects challenge its absolute positioning capabilities provided by GNSS. In conjunction with IMU drift, the platform’s trajectory has an unknown accuracy, which influences the quality of the data product. By employing a highly accurate co-registration technique for identifying tie correspondences between mobile mapping images and aerial nadir as well as aerial oblique images, reliable ground control can be introduced into an adjustment solution. We exemplify the performance of our registration results by showcasing adjusted mobile mapping trajectories in four different test areas, each with about 100 consecutive recording locations (approx. 500&amp;thinsp;m length) in the city centre of Rotterdam, The Netherlands. The mobile mapping data has been adjusted in different configurations, i.e. with nadir or oblique aerial correspondences only and if possible in conjunction. To compare the horizontal as well as the vertical accuracy before and after the respective adjustments, more than 30 ground control points were surveyed for these experiments. In general, the aim of our technique is not only to correct mobile mapping trajectories in an automated fashion but also to verify their accuracy without the need to acquire ground control points. In most of our test cases, the overall accuracy of the mobile mapping image positions in the trajectory could be improved. Depending on the test area, an RMSE in 3D between 15 and 21&amp;thinsp;cm and an RMSE in 2D between 11 and 18&amp;thinsp;cm is achievable.</p>


Author(s):  
B. Kalantar ◽  
N. Ueda ◽  
H. A. H. Al-Najjar ◽  
H. Moayedi ◽  
A. A. Halin ◽  
...  

<p><strong>Abstract.</strong> Multisource remote sensing image data provides synthesized information to support many applications including land cover mapping, urban planning, water resource management, and GIS modelling. Effectively utilizing such images however requires proper image registration, which in turn highly relies on accurate ground control points (GCP) selection. This study evaluates the performance of the interest point descriptor SURF (Speeded-Up Robust Features) for GCPs selection from UAV and LiDAR images. The main motivation for using SURF is due to it being invariant to scaling, blur and illumination, and partially invariant to rotation and view point changes. We also consider features generated by the Sobel and Canny edge detectors as complements to potentially increase the accuracy of feature matching between the UAV and LiDAR images. From our experiments, the red channel (Band-3) produces the most accurate and practical results in terms of registration, while adding the edge features seems to produce lacklustre results.</p>


2020 ◽  
Vol 194 ◽  
pp. 05030
Author(s):  
Yin Yaqiu ◽  
Jiang Cunhao ◽  
Lv Jing ◽  
Wang Jie ◽  
Ju Xing ◽  
...  

Taking the Xiangwang bauxite mining of Xiaoyi City, Shanxi Province as the research object, the DJi “Wu”inspire2 model Unmanned aerial vehicle (UAV) was used to obtain the video data, image data and Ground control points (GCP) data of a typical pit in the study area. Based on the two kinds of data source (video data and image data), the Digital surface model (DSM) of the research area was acquired with or without ground control points through aerial triangulation and block adjustment. Using the DSM obtained by the two data source, the distribution of elevation, slope, slope direction, surface fluctuation and surface roughness was extracted and compared. Research shows that the DSM, acquired by the ContextCapture software without GCP, using video data obtained by aerial shooting around one interest point, can qualitatively reflect the topographic distribution of the land surface. The DSM got by the video data with the GCP can achieve the similar accuracy with the result obtained by image data, and the topographic information acquired by the two kinds of data source has highly similar characteristics in spatial and numerical distribution. It can be concluded through comparison and analysis of the topographical factors that steep slopes with complex topography and large elevation difference distributes in the northwest-central of the pit, of which northwest and southwest slopes can be easily eroded by wind and rain, so attention should be paid to slop stability monitoring and disaster prevention in this area. As a whole, the results show that video data obtained by UAV can not only reflect the dynamic changes of the land surface qualitatively, but also can describe the distribution of surface topography quantitatively through processing to get the DSM. It has great application potential in the field of disaster emergency monitoring and geological hazard risk assessment in mining areas.


Author(s):  
T. Kraft ◽  
M. Geßner ◽  
H. Meißner ◽  
M. Cramer ◽  
M. Gerke ◽  
...  

In this paper we present the further evaluation of DLR’s modular airborne camera system MACS-Micro for small unmanned aerial vehicle (UAV). The main focus is on standardized calibration procedures and on photogrammetric workflows. The current prototype consists of an industrial grade frame imaging camera with 12 megapixel resolutions and a compact GNSS/IMU solution which are operated by an embedded computing unit (CPU). The camera was calibrated once pre-flight and several times post-flight over a period of 5 month using a three dimensional test field. The verification of the radiometric quality of the acquired images has been done under controlled static conditions and kinematic conditions testing different demosaicing methods. The validation of MACS-Micro is done by comparing a traditional photogrammetric evaluation with the workflows of Agisoft Photoscan and Pix4D Mapper. The analyses are based on an aerial survey of an urban environment using precise ground control points and acquired GNSS observations. Aerial triangulations with different configuratrions of ground control points (GCP’s) had been calculated, comparing the results of using a camera self-calibration and introducing fixed interior orientation parameters for Agisoft and Pix4D. The results are promising concerning the metric characteristics of the used camera and achieved accuracies in this test case. Further aspects have to be evaluated by further expanded test scenarios.


Author(s):  
Q. Chen ◽  
T. Li ◽  
X. Tang ◽  
X. Gao ◽  
X. Zhang

GF-3 satellite, the first C band and full-polarization SAR satellite of China with spatial resolution of 1&amp;thinsp;m, was successfully launched in August 2016. We analyze the error sources of GF-3 satellite in this paper, and provide the interferometric calibration model based on range function, Doppler shift equation and interferometric phase function, and interferometric parameters calibrated using the three-dimensional coordinates of ground control points. Then, we conduct the experimental two pairs of images in fine stripmap I mode covering Songshan of Henan Province and Tangshan of Hebei Province, respectively. The DEM data are assessed using SRTM DEM, ICESat-GLAS points, and ground control points database obtained using ZY-3 satellite to validate the accuracy of DEM elevation. The experimental results show that the accuracy of DEM extracted from GF-3 satellite SAR data can meet the requirements of topographic mapping in mountain and alpine regions at the scale of 1&amp;thinsp;:&amp;thinsp;50000 in China. Besides, it proves that GF-3 satellite has the potential of interferometry.


2020 ◽  
Vol 9 (11) ◽  
pp. 656
Author(s):  
Muhammad Hamid Chaudhry ◽  
Anuar Ahmad ◽  
Qudsia Gulzar

Unmanned Aerial Vehicles (UAVs) as a surveying tool are mainly characterized by a large amount of data and high computational cost. This research investigates the use of a small amount of data with less computational cost for more accurate three-dimensional (3D) photogrammetric products by manipulating UAV surveying parameters such as flight lines pattern and image overlap percentages. Sixteen photogrammetric projects with perpendicular flight plans and a variation of 55% to 85% side and forward overlap were processed in Pix4DMapper. For UAV data georeferencing and accuracy assessment, 10 Ground Control Points (GCPs) and 18 Check Points (CPs) were used. Comparative analysis was done by incorporating the median of tie points, the number of 3D point cloud, horizontal/vertical Root Mean Square Error (RMSE), and large-scale topographic variations. The results show that an increased forward overlap also increases the median of the tie points, and an increase in both side and forward overlap results in the increased number of point clouds. The horizontal accuracy of 16 projects varies from ±0.13m to ±0.17m whereas the vertical accuracy varies from ± 0.09 m to ± 0.32 m. However, the lowest vertical RMSE value was not for highest overlap percentage. The tradeoff among UAV surveying parameters can result in high accuracy products with less computational cost.


Sign in / Sign up

Export Citation Format

Share Document