Continental runoff of solid matter as a source of dissolved calcium in the ocean

Oceanology ◽  
2014 ◽  
Vol 54 (4) ◽  
pp. 445-449
Author(s):  
A. V. Savenko ◽  
V. S. Savenko
2016 ◽  
pp. 3524-3528
Author(s):  
Casey Ray McMahon

In this paper, I discuss the theory behind the use of a dense, concentrated neutron particle-based beam. I look at the particle based physics behind such a beam, when it is focused against solid material matter. Although this idea is still only theoretical, it appears that such a beam may be capable of disrupting the stability of the atoms within solid matter- in some cases by passing great volumes of neutrons between the electron and nucleus thus effectively “shielding” the electron from the charge of the nucleus. In other cases, by disrupting the nucleus by firing neutrons into it, disrupting the nucleus and weakening its bond on electrons. In either case- the resulting effect would be a disruption of the atom, which in the case of material matter would cause said material matter to fail, which would appear to the observer as liquification with some plasma generation. Thus, a dense neutron particle based beam could be used to effectively liquefy material matter. Such a beam could bore through rock, metal, or even thick, military grade armour, like that used on tanks- causing such materials to rapidly liquefy. The denser and thicker the neutron beam, the more devastating the effect of the beam- thus the faster material matter will liquefy and the greater the area of liquification. Such a beam would have applications in Defence, mining and drilling operations.


Author(s):  
Elena Kovaleva ◽  
Elena Kovaleva ◽  
Alexander Izhitskiy ◽  
Alexander Izhitskiy ◽  
Alexander Egorov ◽  
...  

Studying of methane formation and distribution in natural waters is important for understanding of biogeochemical processes of carbon cycle, searching for oil and gas sections and evaluation of CH4 emissions for investigations of greenhouse effect. The Black Sea is the largest methane water body on our planet. However, relatively low values of methane concentration (closed to equilibrium with the atmospheric air) are typical of the upper aerobic layer. At the same time, the distribution pattern of CH4 in surface waters of coastal areas is complicated by the influence of coastal biological productivity, continental runoff, bottom sources, hydrodynamic processes and anthropogenic effect. The investigation is focused on the spatial variability of dissolved methane in the surface layer of the sea in coastal regions affected by the continental runoff and anthropogenic pressure. Unique in situ data on methane concentrations were collected along the ship track on 2 sections between Sochi and Gelendzhik (2013, 2014) and 2 sections between Gelendzhik and Feodosia (2015). Overall 170 samples were obtained. Gas-chromatographic analysis of the samples revealed increase of CH4 saturation in the southeastern part of the Crimean shelf and the Kerch Strait area. Such a pattern was apparently caused by the influence of the Azov Sea water spread westward along the Crimean shore from the strait. This work was supported by the Russian Science Foundation, Project 14-50-00095 and the Russian Foundation for Basic Research, Project 16-35-00156 mol_a.


Author(s):  
Elena Kovaleva ◽  
Elena Kovaleva ◽  
Alexander Izhitskiy ◽  
Alexander Izhitskiy ◽  
Alexander Egorov ◽  
...  

Studying of methane formation and distribution in natural waters is important for understanding of biogeochemical processes of carbon cycle, searching for oil and gas sections and evaluation of CH4 emissions for investigations of greenhouse effect. The Black Sea is the largest methane water body on our planet. However, relatively low values of methane concentration (closed to equilibrium with the atmospheric air) are typical of the upper aerobic layer. At the same time, the distribution pattern of CH4 in surface waters of coastal areas is complicated by the influence of coastal biological productivity, continental runoff, bottom sources, hydrodynamic processes and anthropogenic effect. The investigation is focused on the spatial variability of dissolved methane in the surface layer of the sea in coastal regions affected by the continental runoff and anthropogenic pressure. Unique in situ data on methane concentrations were collected along the ship track on 2 sections between Sochi and Gelendzhik (2013, 2014) and 2 sections between Gelendzhik and Feodosia (2015). Overall 170 samples were obtained. Gas-chromatographic analysis of the samples revealed increase of CH4 saturation in the southeastern part of the Crimean shelf and the Kerch Strait area. Such a pattern was apparently caused by the influence of the Azov Sea water spread westward along the Crimean shore from the strait. This work was supported by the Russian Science Foundation, Project 14-50-00095 and the Russian Foundation for Basic Research, Project 16-35-00156 mol_a.


1900 ◽  
Vol 66 (424-433) ◽  
pp. 110-125 ◽  

It has long been held that a large number of colloidal solutions are related to or identical with suspensions of solid matter in a fluid in which the particles of solid are so small as to settle at an infinitely slow rate. Such solutions are the colloidal solutions of metals and of sulphides such as those of antimony, arsenic, and cadmium.


1881 ◽  
Vol 32 (212-215) ◽  
pp. 407-408

During the progress of the investigations which I have from time to time had the honour of bringing under the notice of the Royal Society, I have again and again noticed the apparent disappearance of gases inclosed in vessels of various materials when the disappearance could not be accounted for upon the assumption of ordinary leakage. After a careful examination of the subject I found that the solids absorbed or dissolved the gases, giving rise to a striking example of the fixation of a gas in a solid without chemical action. In carrying out that most troublesome investigation, the crystalline separation of carbon from its compounds, the tubes used for experiment have been in nine cases out of ten found to be empty on opening them, and in most cases a careful testing by hydraulic press showed no leakage. The gases seemed to go through the solid iron, although it was 2 inches thick. A series of experiments with various linings were tried. The tube was electro-plated with copper, silver, and gold, but with no greater success. Siliceous linings were tried fusible enamels and glass—but still the' tubes refused to hold the contents. Out of thirty-four experiments made since my last results were published, only four contained any liquid or condensed gaseous matter after the furnacing. I became convinced that the solid matter at the very high pressure and temperature used must be pervious to gases.


Geology ◽  
1996 ◽  
Vol 24 (4) ◽  
pp. 327 ◽  
Author(s):  
Bernhard Peucker Ehrenbrink ◽  
Greg Ravizza

2006 ◽  
Vol 70 (18) ◽  
pp. A651
Author(s):  
E.T. Tipper ◽  
A. Galy ◽  
M.J. Bickle ◽  
D. Calmels ◽  
J. Gaillardet
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document