A Stable Reduction of the Number of Brain Functional Connectivity Patterns Determines Prolonged Disorders of Consciousness in Patients with Traumatic Brain Injuries

BIOPHYSICS ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 671-680
Author(s):  
L. B. Oknina ◽  
O. S. Zaitsev ◽  
E. L. Masherov ◽  
E. L. Pogosbekyan ◽  
A. S. Zigmantovich ◽  
...  
2018 ◽  
Vol 14 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Jinliang Zhang ◽  
Gaoyan Zhang ◽  
Xianglin Li ◽  
Peiyuan Wang ◽  
Bin Wang ◽  
...  

2015 ◽  
Vol 10 (4) ◽  
pp. 1117-1126 ◽  
Author(s):  
Amgad Droby ◽  
Kenneth S. L. Yuen ◽  
Muthuraman Muthuraman ◽  
Sarah-Christina Reitz ◽  
Vinzenz Fleischer ◽  
...  

2015 ◽  
Vol 112 (28) ◽  
pp. 8762-8767 ◽  
Author(s):  
Javier Gonzalez-Castillo ◽  
Colin W. Hoy ◽  
Daniel A. Handwerker ◽  
Meghan E. Robinson ◽  
Laura C. Buchanan ◽  
...  

Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspects of cognition to group-level, minute-to-minute FC changes in localized connections, we hypothesized that whole-brain FC states may reflect the global, orchestrated dynamics of cognitive processing on the scale of seconds. To test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. FC states computed within windows as short as 22.5 s permitted robust tracking of cognition in single subjects with near perfect accuracy. Accuracy dropped markedly for subjects with the lowest task performance. Spatially restricting FC information decreased accuracy at short time scales, emphasizing the distributed nature of whole-brain FC dynamics, beyond univariate magnitude changes, as valuable markers of cognition.


2018 ◽  
Author(s):  
Paulina Kieliba ◽  
Sasidhar Madugula ◽  
Nicola Filippini ◽  
Eugene P. Duff ◽  
Tamar R. Makin

AbstractMeasuring whole-brain functional connectivity patterns based on task-free (‘restingstate’) spontaneous fluctuations in the functional MRI (fMRI) signal is a standard approach to probing habitual brain states, independent of task-specific context. This view is supported by spatial correspondence between task- and rest-derived connectivity networks. Yet, it remains unclear whether intrinsic connectivity observed in a resting-state acquisitions is persistent during task. Here, we sought to determine how changes in ongoing brain activation, elicited by task performance, impact the integrity of whole-brain functional connectivity patterns. We employed a ‘steadystates’ paradigm, in which participants continuously executed a specific task (without baseline periods). Participants underwent separate task-based (visual, motor and visuomotor) or task-free (resting) steady-state scans, each performed over a 5-minute period. This unique design allowed us to apply a set of traditional resting-state analyses to various task-states. In addition, a classical fMRI block-design was employed to identify individualized brain activation patterns for each task, allowing to characterize how differing activation patterns across the steady-states impact whole-brain intrinsic connectivity patterns. By examining correlations across segregated brain regions (nodes) and the whole brain (using independent component analysis), we show that the whole-brain network architecture characteristic of the resting-state is robustly preserved across different steady-task states, despite striking inter-task changes in brain activation (signal amplitude). Subtler changes in functional connectivity were detected locally, within the active networks. Together, we show that intrinsic connectivity underlying the canonical resting-state networks is relatively stable even when participants are engaged in different tasks and is not limited to the resting-state.New and NoteworthyDoes intrinsic functional connectivity (FC) reflect the canonical or transient state of the brain? We tested the consistency of the intrinsic connectivity networks across different task-conditions. We show that despite local changes in connectivity, at the whole-brain level there is little modulation in FC patterns, despite profound and large-scale activation changes. We therefore conclude that intrinsic FC largely reflects the a priori habitual state of the brain, independent of the specific cognitive context.


Sign in / Sign up

Export Citation Format

Share Document