Relation of water activity to the static dielectric constant of concentrated electrolyte solutions

2007 ◽  
Vol 414 (1) ◽  
pp. 120-122 ◽  
Author(s):  
A. K. Lyashchenko ◽  
I. M. Karataeva
RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5179-5181
Author(s):  
Sayantan Mondal ◽  
Biman Bagchi

Neglects of inherent anisotropy and distinct dielectric boundaries may lead to completely erroneous results. We demonstrate that such mistakes can give rise to gross underestimation of the static dielectric constant of cylindrically nanoconfined water.


1984 ◽  
Vol 88 (10) ◽  
pp. 2124-2127 ◽  
Author(s):  
Mario Della Monica ◽  
Andrea Ceglie ◽  
Angela Agostiano

2007 ◽  
Vol 101 (12) ◽  
pp. 124911 ◽  
Author(s):  
C. K. Ghosh ◽  
K. K. Chattopadhyay ◽  
M. K. Mitra

1964 ◽  
Vol 19 (9) ◽  
pp. 1070-1075
Author(s):  
H. Vogel ◽  
H. Bässler

The activation energy of the d. c. conductance of organic liquids lies between 0.04 and 0.45 eV in the lower region of temperature of their liquid state. A comparison of these values with the static dielectric constant shows, that the activation energy may be regarded as a pure COULOMB energy: E2 = e2/2 ε r . The characteristic distance r has the approximate value of 8.5 Å for hydrocarbons. It decreases for halogen- and nitro-derivates. Formerly it was found that the conductivity of mixtures obeys the law σM = σAC · σB1-C. This can easily be explained assuming εM = c εA + (1 — c) εB. In the case of rather different ε values or of homologuous compounds forming complexes, σ increases. This is identical with a kink in the log σ (c) -curve.


2021 ◽  
Vol 64 (4) ◽  
pp. 1373-1379
Author(s):  
Samir Trabelsi

HighlightsMoisture and water activity were determined nondestructively and in real time from measurement of dielectric properties.Moisture and water activity calibration equations were established in terms of the dielectric properties.Situations in which bulk density was known or unknown were considered.SEC ranged from 0.41% to 0.68% for moisture and from 0.02 to 0.04 for water activity.Abstract. A method for rapid and nondestructive determination of moisture content and water activity of granular and particulate materials was developed. The method relies on measurement of the dielectric constant and dielectric loss factor at a single microwave frequency. For the purpose of illustration, the method was applied to predicting the moisture content and water activity of almond kernels. A free-space transmission technique was used for accurate measurement of the dielectric properties. Samples of Bute Padre almond kernels with moisture content ranging from 4.8% to 16.5%, wet basis (w.b.), and water activity ranging from 0.50 to 0.93 were loaded into a Styrofoam sample holder and placed between two horn-lens antennas connected to a vector network analyzer. The dielectric properties were calculated from measurement of the attenuation and phase shift at 8 GHz and 25°C. The dielectric properties increased linearly with moisture content, while they showed an exponential increase with water activity. Situations in which the bulk density was known and unknown were considered. Linear and exponential growth regressions provided equations correlating the dielectric properties with moisture content and water activity with coefficients of determination (r2) higher than 0.96. Analytical expressions of moisture content and water activity in terms of the dielectric properties measured at 8 GHz and 25°C are provided. The standard error of calibration (SEC) was calculated for each calibration equation. Results show that moisture content can be predicted with SECs ranging from 0.41% to 0.68% (w.b.) and water activity with SECs ranging from 0.02 to 0.04 for almond kernel samples with water activity ranging from 0.5 to 0.9 and moisture contents ranging from 4.8% to 16.5% (w.b.). Keywords: Bulk density, Dielectric constant, Dielectric loss factor, Free-space measurements, Loss tangent, Microwave frequencies, Moisture content, Water activity.


Sign in / Sign up

Export Citation Format

Share Document