Characterization of Polygonal Hydraulic Jump during Liquid Jet Impingement on a Flat Substrate

2021 ◽  
Vol 56 (4) ◽  
pp. 552-565
Author(s):  
A. Esmaeeli ◽  
M. Passandideh-Fard
Author(s):  
M. Johnson ◽  
D. Maynes ◽  
J. C. Vanderhoff ◽  
B. W. Webb

This paper reports experimental results characterizing the hydraulic jumps that form due to liquid jet impingement on micro-patterned surfaces with alternating micro-ribs and cavities. The surfaces are characterized by the cavity fraction, which is defined as the width of a cavity divided by the combined width of a cavity and an adjoining rib. The surfaces are all hydrophilic and thus the cavity regions are wetted during the impingement process. Four different surface designs were studied, with respective cavity fractions of 0 (smooth surface), 0.5, 0.8, and 0.93. The experimental data spans a Weber number range (based on the jet velocity and diameter) of 600 to 2100 and a corresponding Reynolds number range of 11500 to 21400. As with jet impingement on a smooth surface, when a liquid jet strikes a ribbed surface it then moves radially outward in a thin film and eventually experiences a hydraulic jump, where the thickness of the film increases by an order of magnitude, and the velocity decreases accordingly. However, the anisotropy of the patterned surface causes a disparity in frictional resistance dependent upon the direction of the flow relative to the orientation of the ribs. This results in a hydraulic jump which is elliptical rather than circular in shape, where the major axis of the ellipse is aligned parallel to the ribs, concomitant with the frictional resistance being smallest parallel to the ribs and greatest perpendicular to the ribs. When the water depth downstream of the jump was imposed at a predetermined value, the major and minor axis of the jump decreased with increasing water depth, following classical hydraulic jump behavior. The experimental results indicate that for a given cavity fraction and downstream depth, the radius of the jump increases with increasing Reynolds number. At a specified Reynolds number and downstream depth, the hydraulic jump radius in the direction parallel to the ribs of a patterned surface is nominally equal to the jump radius for a smooth surface, regardless of cavity fraction. The jump radius perpendicular to the ribs is notably less than that for a smooth surface, and this radius decreases with increasing cavity fraction.


2020 ◽  
Vol 146 (12) ◽  
pp. 04020079 ◽  
Author(s):  
Juan Francisco Macián-Pérez ◽  
Arnau Bayón ◽  
Rafael García-Bartual ◽  
P. Amparo López-Jiménez ◽  
Francisco José Vallés-Morán

1986 ◽  
Vol 108 (3) ◽  
pp. 540-546 ◽  
Author(s):  
H. J. Carper ◽  
J. J. Saavedra ◽  
T. Suwanprateep

Results are presented from an experimental study conducted to determine the average convective heat transfer coefficient for the side of a rotating disk, with an approximately uniform surface temperature, cooled by a single liquid jet of oil impinging normal to the surface. Tests were conducted over a range of jet flow rates, jet temperatures, jet radial positions, and disk angular velocities with various combinations of three jet nozzle and disk diameters. Correlations are presented that relate the average Nusselt number to rotational Reynolds number, jet Reynolds number, jet Prandtl number, and dimensionless jet radial position.


1994 ◽  
Vol 116 (2) ◽  
pp. 338-344 ◽  
Author(s):  
Sourav K. Bhunia ◽  
John H. Lienhard

In turbulent liquid jet impingement, a spray of droplets often breaks off of the liquid layer formed on the target. This splattering of liquid alters the efficiencies of jet impingement heat transfer processes and chemical containment safety devices, and leads to problems of aerosol formation in jet impingement cleaning processes. In this paper, we present a more complete study of splattering and improved correlations that extend and supersede our previous reports on this topic. We report experimental results on the amount of splattering for jets of water, isopropanol-water solutions, and soap-water mixtures. Jets were produced by straight tube nozzles of diameter 0.8–5.8 mm, with fully developed turbulent pipe-flow upstream of the nozzle exit. These experiments cover Weber numbers between 130-31,000, Reynolds numbers between 2700-98,000, and nozzle-to-target separations of 0.2 ≤ l/d ≤ 125. Splattering of up to 75 percent of the incoming jet liquid is observed. The results show that only the Weber number and l/d affect the fraction of jet liquid splattered. The presence of surfactants does not alter the splattering. A new correlation for the onset condition for splattering is given. In addition, we establish the range of applicability of the model of Lienhard et al. (1992) and we provide a more accurate set of coefficients for their correlation.


Author(s):  
E. López-Honorato ◽  
P. J. Meadows ◽  
J. Tan ◽  
Y. Xiang ◽  
P. Xiao

In this work we have deposited silicon carbide (SiC) at 1300°C with the addition of small amounts of propylene. The use of propylene and high concentrations of methyltrichlorosilane (9 vol %) allowed the deposition of superhard SiC coatings (42 GPa). The superhard SiC could result from the presence of a SiC–C solid solution, undetectable by X-ray diffraction but visible by Raman spectroscopy. Another sample obtained by the use of 50 vol % Argon, also showed the formation of SiC with good properties. The use of a flat substrate together with the particles showed the importance of carrying out the analysis on actual particles rather than in flat substrates. We show that it is possible to characterize the anisotropy of pyrolytic carbon by Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document