Adjustment of the nanosecond laser pulse duration by using a carbon nanotube suspension

2010 ◽  
Vol 53 (6) ◽  
pp. 849-852
Author(s):  
G. M. Mikheev ◽  
V. V. Vanyukov ◽  
T. N. Mogileva ◽  
A. V. Okotrub
2021 ◽  
pp. 251659842110081
Author(s):  
Sooraj Shiby ◽  
Nilesh J Vasa ◽  
Matsuo Shigeki

Pulsed laser-based material removal is a preferred technique for microscribing of copper (Cu) film coated on polymers, as the pulse width limits the heat diffusion. However, experimental studies have shown that microscribing of Cu in air results in recast/redeposit formation and oxidation. Although the water medium can reduce these effects to a certain extent, the material removal rate is lesser for Cu. This article reports the influence of laser pulse duration on a hybrid method to enhance the pulsed laser-assisted microscribing of a copper thin film in the presence of an environmentally friendly sodium chloride salt solution (NaCl). The focused laser beam irradiation of Cu film results in ablation with a temperature of the zone well above the boiling point of Cu, which in turn, can assist in accelerating the chemical reaction. In this hybrid scribing technique, along with laser-based material removal, laser-activated chemical etching also helps in removing the material selectively. A sub-nanosecond laser with a pulse width of 500 ps (picosecond [ps] laser) and a nanosecond laser with a pulse width of 6 ns (nanosecond [ns] laser), with a wavelength of 532 nm, are used to understand the influence of laser pulse duration on this hybrid material removal mechanism. Hybrid microscribing with the ps- and ns lasers in salt solution resulted in an increase in the channel depth by ≈5 µm and ≈9 µm, respectively, compared to the channel depth obtained in deionized water. The theoretical model shows that during the ns laser ablation, the cooling rate is slower, resulting in a high temperature in the ablation zone for a longer duration and improved material removal.


1983 ◽  
Vol 44 (11) ◽  
pp. 1247-1255 ◽  
Author(s):  
A. L'Huillier ◽  
L.A. Lompre ◽  
G. Mainfray ◽  
C. Manus

2021 ◽  
Vol 138 ◽  
pp. 106916
Author(s):  
M. Curcio ◽  
A. De Bonis ◽  
A. Santagata ◽  
A. Galasso ◽  
R. Teghil

2002 ◽  
Vol 20 (2) ◽  
pp. 263-268 ◽  
Author(s):  
X. FLEURY ◽  
S. BOUQUET ◽  
C. STEHLÉ ◽  
M. KOENIG ◽  
D. BATANI ◽  
...  

In this article, we present a laboratory astrophysics experiment on radiative shocks and its interpretation using simple modelization. The experiment is performed with a 100-J laser (pulse duration of about 0.5 ns) which irradiates a 1-mm3 xenon gas-filled cell. Descriptions of both the experiment and the associated diagnostics are given. The apparition of a radiation precursor in the unshocked material is evidenced from interferometry diagrams. A model including self-similar solutions and numerical ones is derived and fairly good agreements are obtained between the theoretical and the experimental results.


2017 ◽  
Vol 124 (1) ◽  
Author(s):  
Haichao Yu ◽  
Lugui Cui ◽  
Kai Zhang ◽  
Jun Yang ◽  
Hanyang Li

2000 ◽  
Vol 154-155 ◽  
pp. 467-472 ◽  
Author(s):  
A Giardini Guidoni ◽  
C Flamini ◽  
F Varsano ◽  
M Ricci ◽  
R Teghil ◽  
...  

1994 ◽  
Vol 7 (3) ◽  
pp. 175-188 ◽  
Author(s):  
Taiqing Qiu ◽  
Chang-Lin Tien ◽  
Mark A. Shannon ◽  
Richard E. Russo

Sign in / Sign up

Export Citation Format

Share Document