Resonant Interactions of Vector Breathers

JETP Letters ◽  
2021 ◽  
Author(s):  
A. A. Raskovalov ◽  
A. A. Gelash
1988 ◽  
Vol 190 ◽  
pp. 357-374 ◽  
Author(s):  
R. Grimshaw

Resonant interactions between triads of internal gravity waves propagating in a shear flow are considered for the case when the stratification and the background shear flow vary slowly with respect to typical wavelengths. If ωn, kn(n = 1, 2, 3) are the local frequencies and wavenumbers respectively then the resonance conditions are that ω1 + ω2 + ω3 = 0 and k1 + k2 + k3 = 0. If the medium is only weakly inhomogeneous, then there is a strong resonance and to leading order the resonance conditions are satisfied globally. The equations governing the wave amplitudes are then well known, and have been extensively discussed in the literature. However, if the medium is strongly inhomogeneous, then there is a weak resonance and the resonance conditions can only be satisfied locally on certain space-time resonance surfaces. The equations governing the wave amplitudes in this case are derived, and discussed briefly. Then the results are applied to a study of the hierarchy of wave interactions which can occur near a critical level, with the aim of determining to what extent a critical layer can reflect wave energy.


1988 ◽  
Vol 39 (3) ◽  
pp. 485-502 ◽  
Author(s):  
Richard M. Thorne ◽  
Danny Summers

Analytical solutions are presented for the linear growth rate of oblique plasma waves in a magnetized plasma due to resonant interactions with a model ringbeam distribution. Explicit closed-form solutions for the angular dependence are obtained in terms of modified Bessel functions of the first kind. In the limits of either quasi-longitudinal or quasi-transverse propagation the analytical solutions take the form of simple algebraic expansions, which allow an immediate comparison of the relative contributions from different harmonic resonances, and which also determine the conditions for marginal stability for any specific resonance. The results can be applied, for instance, to the growth of waves following ionization of neutrals originating from cometary, planetary, or interstellar material in the solar wind. In a weakly unstable plasma the analytical results also provide an important check on the complex numerical codes that hitherto constituted the only method available for evaluating the growth of oblique plasma waves.


2016 ◽  
Vol 7 ◽  
pp. 862-868 ◽  
Author(s):  
Tessnim Sghaier ◽  
Sylvain Le Liepvre ◽  
Céline Fiorini ◽  
Ludovic Douillard ◽  
Fabrice Charra

A well-organized monolayer of alkylated perylene-3,4,9,10-tetracarboxylic-3,4,9,10-diimide (PTCDI) has been formed onto CVD graphene transferred on a transparent substrate. Its structure has been probed by scanning tunnelling microscopy and its optical properties by polarized transmission spectroscopy at varying incidence. The results show that the transition dipoles of adsorbed PTCDI are all oriented parallel to the substrate. The maximum absorption is consistent with the measured surface density of molecules and their absorption cross section. The spectrum presents mainly a large red-shift of the absorption line compared with the free molecules dispersed in solution, whereas the relative strengths of the vibronic structures are preserved. These changes are attributed to non-resonant interactions with the graphene layer and the neighbouring molecules.


1985 ◽  
Vol 53 (12) ◽  
pp. 1143-1144
Author(s):  
Meera Chandrasekhar ◽  
H.R. Chandrasekhar ◽  
K.K. Bajaj ◽  
N. Sclar

Sign in / Sign up

Export Citation Format

Share Document