Structural parameters of the nearest surrounding of ions in aqueous solutions of erbium chloride according to X-ray diffraction

2015 ◽  
Vol 60 (12) ◽  
pp. 1514-1517
Author(s):  
P. R. Smirnov ◽  
O. V. Grechin
1982 ◽  
Vol 37 (10) ◽  
pp. 1205-1210 ◽  
Author(s):  
G. Licheri ◽  
G. Paschina ◽  
G. Piccaluga ◽  
G. Pinna

Five aqueous solutions of ZnSO4 of concentrations ranging from 0.6M to 3.1 M were examined by X-ray diffraction. In the correlation functions no concentration effect on structural phenomena is detectable. The same model was then successfuly used for all cases, attributing two hydration shells to Zn2+ and one hydration shell to SO42+ . The reliability of the structural parameters obtained is discussed.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Sytle Antao

Synchrotron high-resolution powder X-ray diffraction (HRPXRD) and Rietveld structure refinements were used to examine the crystal structure of single phases and intergrowths (either two or three phases) in 13 samples of the helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. The helvine structure was refined in the cubic space group P4¯3n. For the intergrowths, simultaneous refinements were carried out for each phase. The structural parameters for each phase in an intergrowth are only slightly different from each other. Each phase in an intergrowth has well-defined unit-cell and structural parameters that are significantly different from the three endmembers and these do not represent exsolution or immiscibility gaps in the ternary solid-solution series. The reason for the intergrowths in the helvine-group minerals is not clear considering the similar radii, identical charge, and diffusion among the interstitial M cations (Zn2+, Fe2+, and Mn2+) that are characteristic of elongated tetrahedral coordination. The difference between the radii of Zn2+ and Mn2+ cations is 10%. Depending on the availability of the M cations, intergrowths may occur as the temperature, pressure, fugacity fS2, and fluid composition change on crystallization. The Be–Si atoms are fully ordered. The Be–O and Si–O distances are nearly constant. Several structural parameters (Be–O–Si bridging angle, M–O, M–S, average <M–O/S>[4] distances, and TO4 rotational angles) vary linearly with the a unit-cell parameter across the series because of the size of the M cation.


2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


2020 ◽  
Vol 56 (2) ◽  
pp. 269-277
Author(s):  
V.E. Sokol’skii ◽  
D.V. Pruttskov ◽  
O.M. Yakovenko ◽  
V.P. Kazimirov ◽  
O.S. Roik ◽  
...  

Anorthite and gehlenite crystalline structure and short-range order of anorthite melt have been studied by X-ray diffraction in the temperature range from room temperature up to ~ 1923 K. The corresponding anorthite and gehlenite phases were identified as well as amorphous component for anorthite samples having identical shape to XRD pattern of the anorthite melt. The structure factor and the radial distribution function of atoms of the anorthite melt were calculated from the X-ray high-temperature experimental data. The partial structural parameters of the short-range order of the melt were reconstructed using Reverse Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document