Investigation of Crystal-Chemical Features of Pyrite and Conditions of Its Formation

2021 ◽  
Vol 66 (7) ◽  
pp. 1001-1010
Author(s):  
V. V. Onufrienok ◽  
A. V. Chzhan
Keyword(s):  
1974 ◽  
Vol 113 (6) ◽  
pp. 360 ◽  
Author(s):  
O.M. Sumbaev ◽  
E.V. Petrovich ◽  
Yu.P. Smirnov ◽  
I.M. Band ◽  
Aleksandr I. Smirnov

2019 ◽  
Vol 57 (5) ◽  
pp. 571-581
Author(s):  
Emil Makovicky

Abstract Crystal structures of the three polymorphs of Cu5(PO4)2(OH)4, namely pseudomalachite, ludjibaite, and reichenbachite, can be described as being composed of rods perpendicular to their crystal-chemical layering. Two different sorts of rods can be defined. Type 1 rods share rows of Cu coordination polyhedra, forming a series of slabs. Slab boundaries and slab interiors represent alternating geometric OD layers of two kinds, with layer symmetries close to P21/m and , which make up two different stacking schemes of geometric OD layers in the structures of ludjibaite and pseudomalachite. Such OD layers, however, are not developed in reichenbachite. Type 2 rods are defined as having columns of PO4 tetrahedra in the corners of the rods. In the Type 2 slabs composed of these rods, geometric Pg OD layers of glide-arrayed tetrahedra alternate with more complex OD layers; in ludjibaite this system of layers is oriented diagonally with respect to the Type 1 OD layer system. Two different OD stackings of Type 2 OD layers form the ludjibaite and reichenbachite structures but not that of pseudomalachite. Thus, ludjibaite might form disordered intergrowths with either of the other two members of the triplet but reichenbachite and pseudomalachite should not form oriented intergrowths. Current knowledge concerning formation of the three polymorphs is considered.


1998 ◽  
Vol 83 (1-2) ◽  
pp. 178-184 ◽  
Author(s):  
Gerald Giester ◽  
Yunxiang Ni ◽  
Dietmar Jarosch ◽  
John M. Hughes ◽  
Jorn G. Ronsbo ◽  
...  

1993 ◽  
Vol 57 (386) ◽  
pp. 157-164 ◽  
Author(s):  
Mitsuyoshi Kimata

AbstractThe crystal structure of KBSi3O8 (orthorhombic, Pnam, with a = 8.683(1), b = 9.253(1), c = 8.272(1) Å,, V = 664.4(1) Å3, Z = 4) has been determined by the direct method applied to 3- dimensional rcflection data. The structure of a microcrystal with the dimensions 20 × 29 × 37 μm was refined to an unweightcd residual of R = 0.031 using 386 non-zero structure amplitudes. KBSi3O8 adopts a structure essentially different from recdmergneritc NaBSi3O8, with the low albite (NaAlSi3O8) structure, and isotypic with danburite CaB2Si2Os which has the same topology as paracelsian BaAl2Si2O8. The chenfical relationship between this sample and danburitc gives insight into a new coupled substitution; K+ + Si4+ = Ca2+ + B3+ in the extraframework and tetrahedral sites. The present occupancy refinement revealed partial disordering of B and Si atoms which jointly reside in two kinds of general equivalent points, T(1) and T(2) sites. Thus the expanded crystal-chemical formula can be written in the form K(B0.44Si0.56)2(B0.06Si0.94)2O8The systematic trend among crystalline compounds with the M+T3+T4+3O8 formula suggests that they exist in one of four structural types; the feldspar structures with T3+/T4+ ordered and/or disordered forms, and the paracelsian and the hollandite structures.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Ilya V. Kornyakov ◽  
Sergey V. Krivovichev

Single crystals of two novel shchurovskyite-related compounds, K2Cu[Cu3O]2(PO4)4 (1) and K2.35Cu0.825[Cu3O]2(PO4)4 (2), were synthesized by crystallization from gaseous phase and structurally characterized using single-crystal X-ray diffraction analysis. The crystal structures of both compounds are based upon similar Cu-based layers, formed by rods of the [O2Cu6] dimers of oxocentered (OCu4) tetrahedra. The topologies of the layers show both similarities and differences from the shchurovskyite-type layers. The layers are connected in different fashions via additional Cu atoms located in the interlayer, in contrast to shchurovskyite, where the layers are linked by Ca2+ cations. The structures of the shchurovskyite family are characterized using information-based structural complexity measures, which demonstrate that the crystal structure of 1 is the simplest one, whereas that of 2 is the most complex in the family.


Sign in / Sign up

Export Citation Format

Share Document